Giải và biện luận phương trình
a/ax-1 + b/bx-1 = a+b/(a+b)x-1
Giups mik not bai nay
Giải và biện luận phương trình : \(\frac{a}{ax-1}+\frac{b}{bx-1}=\frac{a+b}{\left(a+b\right)x-1}\) (1)
ĐK : \(\hept{\begin{cases}ax-1\ne0\\bx-1\ne0\\\left(a+b\right)x-1\ne0\end{cases}\Leftrightarrow\hept{\begin{cases}ax\ne1\\bx\ne1\\\left(a+b\right)x\ne1\end{cases}}}\) (2)
Ta có thể viết phương trình dưới dạng : \(abx\left[\left(a+b\right)x-2\right]=0\) (3)
TH1 : a = b = 0
Điều kiện 2 luôn đúng , khi có :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng \(\forall x\in R\)
TH2 : Nếu \(\hept{\begin{cases}a=0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{b}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với mọi \(x\ne\frac{1}{b}\)
TH3 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\), khi đó :
(3) \(\Leftrightarrow0x=0\), phương trình nghiệm đúng với \(\forall x\ne\frac{1}{a}\)
TH4 : Nếu '\(\hept{\begin{cases}a\ne0\\a+b=0\end{cases}\Leftrightarrow b=-a\ne0}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)
Khi đó : (3) \(\Leftrightarrow x=0\), là nghiệm duy nhất của phương trình .
TH5 : Nếu \(\hept{\begin{cases}a\ne0\\b\ne0\\a+b\ne0\end{cases}}\)
Điều kiện (2) trở thành \(x\ne\frac{1}{a}\)và \(x\ne\frac{1}{b}\)và \(x\ne\frac{1}{a+b}\Rightarrow\)(2) \(\Leftrightarrow\orbr{\begin{cases}x=0\\x=\frac{2}{a+b}\end{cases}}\)
Nghiệm \(x=\frac{2}{a+b}\)chỉ thỏa mãn đk khi a\(\ne\)b
KL : ............
Giải và biện luận phương trình sau:
1. ax2 - ab = b2(x - 1)
2. a(ax + b) = b2(x - 1)
2) Ta có: \(a\left(ax+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow a^2x+ab=b^2x-b^2\)
\(\Leftrightarrow a^2x-b^2x=-b^2-ab\)
\(\Leftrightarrow x\left(a^2-b^2\right)=-b\left(b+a\right)\)
\(\Leftrightarrow x\left(b^2-a^2\right)=b\left(b+a\right)\)(1)
Nếu a=b thì (1) trở thành: \(0x=2b^2\)(vô nghiệm)
Nếu a=-b thì (1) trở thành: 0x=0(luôn đúng)
Nếu \(\left|a\right|\ne\left|b\right|\) thì \(x=\dfrac{b}{b-a}\)
giải và biện luận phương trình sau với a, b là tham số
1/ \(b\left(ax-b+2\right)x=2\left(ax+1\right)\)
2/ \(a^2x=a\left(x+b\right)-b\)
Giải và biện luận pt a/1-ax=b/1-bx
Giải và biện luận các phương trình sau
1. a(ax + b) = b2(x - 1)
2. ax2 - ab = b2(x - 1)
giải pt và biện luận:
a/1+bx=b/1+ax
Giải và biện luận phương trình :
\(a\left(ax+b\right)=b^2\left(x-1\right)\)
Không chắc đúng hay không nha,tui mới lớp 7=(
\(x\left(a^2-b^2\right)+b\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left(a-b\right)x+b\left(a+b\right)=0\)
\(\Leftrightarrow\left(a+b\right)\left[\left(a-b\right)x+b\right]=0\)
\(\Leftrightarrow\orbr{\begin{cases}a=-b\\ax-bx+b=0\end{cases}}\Leftrightarrow\orbr{\begin{cases}a=-b\\x=-\frac{b}{a-b}\end{cases}}\)
+Với a = -b,thì phương trình trở thành:
\(-b\left(-bx+b\right)=b^2\left(x-1\right)\)
\(\Leftrightarrow0=0\) (luôn đúng)
Vậy nếu a = -b thì phương trình có vô số nghiệm.
Với ax - bx + b = 0 thì \(x=-\frac{b}{a-b}=\frac{b}{b-a}\)
Giải và biện luận hệ phương trình
\(\begin{cases}ax+b=0\\bx+a=0\end{cases}\)
\(\begin{cases}ax+b=0\\bx+a=0\end{cases}\) (1)
Nếu a=0, b=0 thì (1) có dạng \(\begin{cases}0x+0=0\\0x+0=0\end{cases}\)
Hệ này có nghiệm là mọi \(x\in\)R
Nếu a=0, b\(\ne\)0 thì ax+b=0 vô nghiệm nên (1) cũng vô nghiệm
Nếu \(a\ne0\) thì ax+b=0 có nghiệm \(x=-\frac{b}{a}=x_1\)
Giá trị \(x_1\) này là nghiệm của (1) khi và chỉ khi nó thỏa mãn bx+a=0 hay là
\(b\left(-\frac{b}{a}\right)+a=0\) \(\Leftrightarrow\) \(b^2=a^2\) \(\Leftrightarrow\) \(\begin{cases}b=a\\b=-a\end{cases}\)
\(\Rightarrow\) \(\begin{cases}x_1=-1\\x=1_1\end{cases}\)
Ta có kết luận :
- Khi \(\begin{cases}a=0\\b\ne0\end{cases}\) hoặc \(\begin{cases}a\ne0\\b\ne\pm a\end{cases}\) thì hệ vô nghiệm
- Khi \(\begin{cases}a\ne0\\b=0\end{cases}\) thì hệ có nghiệm x=-1
- Khi \(\begin{cases}a\ne0\\b=a\end{cases}\) thì hệ có nghiệm x=1
- Khi \(\begin{cases}a=0\\b=0\end{cases}\) thì hệ có nghiệm là mọi x\(\in\)R
Giải và biện luận:
a) \(\dfrac{x}{a}+a>x+1\) (a>1)
b) ax - b> bx + a