Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
phan thị minh anh
Xem chi tiết
Nguyễn Thảo
Xem chi tiết
Võ Đông Anh Tuấn
Xem chi tiết
Đinh Văn Nguyên
Xem chi tiết
Nguyễn Thiên Kim
28 tháng 7 2016 lúc 12:48

Ta có:  \(a^2+b^2+1=2\left(ab+a+b\right)\)

\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)

\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)

\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)

\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\)                                                             \(\left(1\right)\)

Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.

Đặt  \(b=x^2,\)thay vào \(\left(1\right)\):                           \(\left(a-x^2-1\right)^2=4x^2\)

                                                                   \(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)

                  * Xét 2 trường hợp:

- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

- Trường hợp 2:  \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)

Ta có  \(b=x^2\)và  \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và  \(b\)là 2 số chính phương liên tiếp.

                           Vậy  \(a\)và  \(b\)là 2 số chính phương liên tiếp.

luffy
28 tháng 7 2016 lúc 9:06

hi chao ban

Nguyễn Hoàng Phúc
28 tháng 7 2016 lúc 10:40

hello bạn

Anh Lê Đức
Xem chi tiết
thần giao cách cảm
19 tháng 9 2016 lúc 23:23

thtfgfgfghggggggggggggggggggggg

FallenCelestial
Xem chi tiết
FallenCelestial
27 tháng 5 2021 lúc 8:31

thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc

 

Trần Minh Hoàng
27 tháng 5 2021 lúc 10:01

Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p

\(\Rightarrow a^2-b^2⋮p\)

\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).

+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)

+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)

Do đó \(\left(a^2+1,b^2+1\right)=1\).

Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)

Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).

Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.

Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.

Vậy ....

Thơ Nụ =))
Xem chi tiết
Dam Duyen Le
Xem chi tiết
Sơn Nguyễn Lê
Xem chi tiết
Sơn Nguyễn Lê
12 tháng 8 2018 lúc 19:29

Mọi người giúp em với, em cần gấp lắm ạ. Em cảm ơn mọi người nhiều ạ