cho 2 số nguyên a,b thỏa mãn : a^2 +b^2 +1=2(ab+a+b) . CM : a và b là 2 số chính phương liên tiếp
Cho 2 số nguyên a,b thỏa mãn \(a^2+b^2+1=2\left(ab+a+b\right)\) . CM : a và b là 2 số chính phương liên tiếp
Cho 2 số nguyên a, b thỏa mãn:
a^2+b^2+1=2(ab+a+b)
Chứng minh a, b là 2 số chính phương liên tiếp
Cho a,b thuộc N
Thỏa mãn: a2+b2+1=2.(ab+a+b)
Chứng minh: a và b là hai số chính phương liên tiếp
Cho a,b thuộc N
Thỏa mãn: a2+b2+1=2.(ab+a+b)
Chứng minh: a và b là hai số chính phương liên tiếp
Giúp mình với nha
Ta có: \(a^2+b^2+1=2\left(ab+a+b\right)\)
\(\Leftrightarrow\)\(a^2+b^2+1-2ab-2a-2b=0\)
\(\Leftrightarrow\)\(\left(a^2-2ab+b^2\right)-2a+2b+1-4b=0\)
\(\Leftrightarrow\)\(\left(a-b\right)^2-2\left(a-b\right)+1=4b\)
\(\Leftrightarrow\)\(\left(a-b-1\right)^2=4b\) \(\left(1\right)\)
Do đó \(4b\)là một số chính phương, mà 4 là số chính phương suy ra b là số chính phương.
Đặt \(b=x^2,\)thay vào \(\left(1\right)\): \(\left(a-x^2-1\right)^2=4x^2\)
\(\Leftrightarrow\)\(\left(a-x^2-1\right)^2=\left(2x\right)^2\)
* Xét 2 trường hợp:
- Trường hợp 1: \(a-x^2-1=2x\)\(\Leftrightarrow\)\(a=x^2+2x+1=\left(x+1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x+1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
- Trường hợp 2: \(a-x^2-1=-2x\)\(\Leftrightarrow\)\(a=x^2-2x+1=\left(x-1\right)^2\)
Ta có \(b=x^2\)và \(a=\left(x-1\right)^2\)\(\Rightarrow\)\(a\)và \(b\)là 2 số chính phương liên tiếp.
Vậy \(a\)và \(b\)là 2 số chính phương liên tiếp.
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a^2 - b, b^2 - c, c^2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x^2 + y^2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n^2 - 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a^2 + 3b; b^2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a^2 + b^2 + c^2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
Cho các số nguyên dương a > b thỏa mãn: ab − 1 và a + b nguyên tố cùng
nhau; ab + 1 và a − b nguyên tố cùng nhau. Chứng minh rằng: (a + b)^2 + (ab-1)^2 không phải là một số chính phương.
thật ra nó là lớp 7 đấy nhưng mình nghĩ lớp 8 mới giỏi mói giải đc
Giả sử \(a^2+1\) và \(b^2+1\) cùng chia hết cho số nguyên tố p
\(\Rightarrow a^2-b^2⋮p\)
\(\Rightarrow\left(a-b\right)\left(a+b\right)⋮p\Rightarrow\left[{}\begin{matrix}a-b⋮p\\a+b⋮p\end{matrix}\right.\).
+) Nếu \(a-b⋮p\) thì ta có \(\left(a^2+1\right)\left(b^2+1\right)-\left(a-b\right)^2⋮p\Rightarrow\left(ab+1\right)^2⋮p\Rightarrow ab+1⋮p\) (vô lí do (a - b, ab + 1) = 1)
+) Nếu \(a+b⋮p\) thì tương tự ta có \(ab-1⋮p\). (vô lí)
Do đó \(\left(a^2+1,b^2+1\right)=1\).
Giả sử \(\left(a+b\right)^2+\left(ab-1\right)^2=c^2\) với \(c\in\mathbb{N*}\)
Khi đó ta có \(\left(a^2+1\right)\left(b^2+1\right)=c^2\).
Mà \(\left(a^2+1,b^2+1\right)=1\) nên theo bổ đề về số chính phương, ta có \(a^2+1\) và \(b^2+1\) là các số chính phương.
Đặt \(a^2+1=d^2(d\in\mathbb{N*})\Rightarrow (d-a)(d+a)=1\Rightarrow d=1;a=0\), vô lí.
Vậy ....
Các bạn trình bày lời giải hoặc gợi ý nhé, mình cần gấp! Cảm ơn các bạn nhiều!
1. Tìm các số tự nhiên a, b, c sao cho a2 - b, b2 - c, c2 - a đều là các số chính phương.
2. Cho các số nguyên dương x, y thỏa mãn điều kiện x2 + y2 + 2x(y+1) - 2y là số chính phương. CMR: x = y
3. Tìm số nguyên n thỏa mãn (n2- 5)(n + 2) là số chính phương
4. Tìm các số tự nhiên a, b thỏa mãn a2 + 3b; b2 + 3a đều là các số chính phương
5. Cho các số nguyên a, b, c thỏa mãn a2 + b2 + c2 = 2(ab + bc + ca). CMR ab + bc + ca, ab, bc, ca đều là các số chính phương.
6. Cho các số nguyên (a -b)2 = a + 8b -16. CMR a là số chính phương.
7. Tìm các số tự nhiên m, n thỏa mãn 4m - 2m+1 = n2 + n + 6
Cho hai số nguyên a>b thỏa mãn (ab-1, a+b)=(ab+1, a-b)=1. CMR: (a+b)2 + (ab-1)2 không là số chính phương
Mọi người giúp em với, em cần gấp lắm ạ. Em cảm ơn mọi người nhiều ạ