Tìm x,y
(2x-5)^2016 + (3y+4)^2018 <=0
Tìm giá trị nhỏ nhất
P = 2018/x^2+2x+2017
Q = a^2018+2017/a^2018+2015
A = (x-3y)^2020+(y-2018)^2018
B = (x+y-5)^8+(x-2y)^4+2016
C = \x-2017\+\x-2018\
D = \x-2010\+\x-2011\+\x+2012\
Tìm các số hữu tỉ x,y,z biết: \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}\le0\)
Ta có:
\(\left\{{}\begin{matrix}\left(2x-5\right)^{2016}\ge0\\\left(3y+4\right)^{2018}\ge0\end{matrix}\right.\forall x.\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2018}=0\)
\(\Leftrightarrow\left[{}\begin{matrix}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2016}=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x-5=0\\3y+4=0\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}2x=0+5=5\\3y=0-4=-4\end{matrix}\right.\)
\(\Leftrightarrow\left[{}\begin{matrix}x=5:2\\y=\left(-4\right):3\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}x=\frac{5}{2}\\y=-\frac{4}{3}\end{matrix}\right.\)
Vậy \(\left(x;y\right)\in\left\{\frac{5}{2};-\frac{4}{3}\right\}.\)
Chúc bạn học tốt!
Tìm x,y:
(2x-5)2020+(3y+4)2018 < hoặc = 0
\(\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\le0\left(1\right)\)
Ta có: \(\hept{\begin{cases}\left(2x-5\right)^{2020}\ge0;\forall x,y\\\left(3y+4\right)^{2018}\ge0;\forall x,y\end{cases}}\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}\ge0;\forall x,y\left(2\right)\)
Từ \(\left(1\right)\)và \(\left(2\right)\)\(\Rightarrow\left(2x-5\right)^{2020}+\left(3y+4\right)^{2018}=0\)
\(\Leftrightarrow\hept{\begin{cases}\left(2x-5\right)^{2020}=0\\\left(3y+4\right)^{2018}=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=\frac{-4}{3}\end{cases}}\)
Vậy...
tìm x,y biết [2x-5]^2016+[3y+4]^2014<hoặc=0
[2x-5]^2016+[3y+4]^2014<hoặc=0
=>2x-5=0 và 3y+4=0 (vì [2x-5]^2016+[3y+4]^2014>hoặc=0 với mọi x;y)
=>x=5/2 và y=-4/3
vậy x=5/2 và y=-4/3
(2x-5)2016(3y+4)2018< hoặc bằng0
Cho x/3 = y/4=z/5. Chứng minh rằng : 4x-3y/2016 = 5y- 4z/2017 = 3z-5x/2018
Đặt x/3=y/4=z/5=k
=>x=3k; y=4k; z=5k
\(\dfrac{4x-3y}{2016}=\dfrac{4\cdot3k-3\cdot4k}{2016}=0\)
\(\dfrac{5y-4z}{2017}=\dfrac{5\cdot4k-4\cdot5k}{2017}=0\)
\(\dfrac{3z-5x}{2018}=\dfrac{3\cdot5k-5\cdot3k}{2018}=0\)
=>\(\dfrac{4x-3y}{2016}=\dfrac{5y-4z}{2017}=\dfrac{3z-5x}{2018}\)
|x+5|+(3y-4)^2016=0
(5x-y)^2016+|x^2-4|^2017<=0
(2x-1)^2014+(y-2/5)^2016+|x+y+z|=0
|x-1|+|x-2|+|y-3|+|x-4|=3
tìm x ,y bt (/ là giá trị tuyệt đối nhé)
a,/x-3/+/x+5/-8=0
b,/2x+1/+*2x-5/-4=0
c,/x-3/+/3x+4/+/2x-1/=8
d,/x-3y/ mũ 11 +(y+4) mũ 12=0
e,(x+y) mũ 2016 + 2017/y-1/ mũ 3 = 0
d,/x-y-5/+2015(y-3) mũ 2016=0
f,(x-1) mũ 2 + (y+3) mũ 4 = 0
g, 2(x-5) mũ 6 + 5[/2y-7/ mũ 5]=0
ch,/x=3y-1/+(3y-2) mũ 2016 =0
Nếu dc mọi người có thể chỉ rõ cho em cách giả dc ko ạ,lần sau có j em còn bt làm.Em cảm ơn ạ
Tìm x , y biết:
\(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
Vì \(\left(2x-5\right)^{2016}\ge0\forall x;\left(3y+4\right)^{2020}\ge0\forall y\)
\(\Rightarrow\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\ge0\)
Mà đề lại cho \(\left(2x-5\right)^{2016}+\left(3y+4\right)^{2020}\le0\)
Nên \(\hept{\begin{cases}\left(2x-5\right)^{2016}=0\\\left(3y+4\right)^{2020}=0\end{cases}\Rightarrow\hept{\begin{cases}x=\frac{5}{2}\\y=-\frac{4}{3}\end{cases}}}\)
Vậy ..........
vì (2x-5)2016 và (3y+4)2020 >hoặc=0 với mọi x
=>2x-5=3y+4=0
=>x=2/5;y=-4/3