Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Bùi Trần Nhật Thanh
Xem chi tiết
Do Thai
10 tháng 2 2017 lúc 15:35

Cot A>3 

Thắng Nguyễn
11 tháng 2 2017 lúc 18:28

Khi \(\cot x\) là một hàm lồi trên \(\left(0,\frac{\pi}{2}\right)\), và \(A,B,C\in\left(0,\frac{\pi}{2}\right)\), ta có: 

\(\cot A+\cot B+\cot C\ge3\cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)

Theo BĐT Jensen ta được ĐPCM 

Thắng Nguyễn
11 tháng 2 2017 lúc 18:43

Cách khác: 

Sử dụng đồng nhất thức ta có:

\(\tan A+\tan B+\tan C=\tan A\tan B\tan C\)

Vì vậy \(\cot A\cot B+\cot B\cot C+\cot C\cot A=1\) 

Và \(\left(\cot A-\cot B\right)^2+\left(\cot B-\cot C\right)^2+\left(\cot C-\cot A\right)^2\ge0\)

Vì vậy \(\cot^2A+\cot^2B+\cot^2C\ge1\)

Vì vậy \(\left(\cot A+\cot B+\cot C\right)^2=\cot^2A+\cot^2B+\cot^2C+2\left(\cot A\cot B+\cot B\cot C+\cot C\cot A\right)\ge3\)

Vậy \(\cot A+\cot B+\cot C\ge\sqrt{3}\)

Dấu "=" xảy ra khi \(\cot A=\cot B=\cot C\) (Cách này ko chắc 100% đúng)

tran lan vy
Xem chi tiết
tran lan vy
Xem chi tiết
Thắng Nguyễn
2 tháng 7 2017 lúc 11:45

Đùa tí :v, Ta có:

\(tanA+tanB+tanC=tanAtanBtanC\)

Vi` vay \(cotAcotB+cotBcotC+cotCcotA=1\)

Va` \(\left(cotA-cotB\right)^2+\left(cotB-cotC\right)^2+\left(cotC-cotA\right)^2\ge0\)

Vi` vay \(cot^2A+cot^2B+cot^2C\ge1\)

Then \(\left(cotA+cotB+cotC\right)^2=cot^2A+cot^2B+cot^2C+2\left(cotAcotB+cotBcotC+cotCcotA\right)\ge3\)

Nen \(cotA+cotB+cotC\ge\sqrt{3}\)

Xay ra khi \(cotA=cotB=cotC\)

Thắng Nguyễn
2 tháng 7 2017 lúc 9:20

\(cotx\) là hàm lồi trên \(\left(0;\frac{\pi}{2}\right)\) và \(A,B,C\in\left(0;\frac{\pi}{2}\right)\)

Thì theo BĐT Jensen ta có: 

\(cotA+cotB+cotC\ge3cot\left(\frac{A+B+C}{3}\right)=\sqrt{3}\)

Xong :v

chi chăm chỉ
Xem chi tiết
Nguyễn Vũ Quỳnh Như
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 4 2022 lúc 21:47

Ta có:

\(cotA=\dfrac{cosA}{sinA}=\dfrac{b^2+c^2-a^2}{2bc}:\dfrac{2S}{bc}=\dfrac{b^2+c^2-a^2}{4S}\)

Tương tự...

Thay vào đề bài:

\(2\left(\dfrac{b^2+c^2-a^2}{4S}+\dfrac{a^2+b^2-c^2}{4S}\right)=\dfrac{a^2+c^2-b^2}{4S}\)

\(\Rightarrow4b^2=a^2+c^2-b^2\Rightarrow5b^2=a^2+c^2\)

\(\Rightarrow cosB=\dfrac{a^2+c^2-b^2}{2ac}=\dfrac{a^2+c^2-\dfrac{a^2+c^2}{5}}{2ac}=\dfrac{2\left(a^2+c^2\right)}{5ac}\ge\dfrac{4ac}{5ac}=\dfrac{4}{5}\)

\(\Rightarrow sinB=\sqrt{1-cos^2B}\le\sqrt{1-\left(\dfrac{4}{5}\right)^2}=\dfrac{3}{5}\)

Em kiểm tra lại đề, BĐT đề bài bị ngược dấu

Phùng Minh Quân
Xem chi tiết
Trần Phúc Khang
24 tháng 7 2019 lúc 12:17

\(cotA+cotB+cotC\ge\frac{p^2}{3S}\)

<=> \(cotA.S+cotB.S+cotC.S\ge\frac{p^2}{3}\)

MÀ \(S=\frac{1}{2}ab.sinC=\frac{1}{2}bc.SinA=\frac{1}{2}ac.SinB\)

=> \(\frac{1}{2}bc.cosA+\frac{1}{2}ab.cosC+\frac{1}{2}ac.cosC\ge\frac{p^2}{3}\)

Áp dụng công thức hàm cos ta có \(cosA=\frac{b^2+c^2-a^2}{2bc};cosB=\frac{a^2+c^2-b^2}{2ac};cosC=\frac{b^2+a^2-c^2}{2ab}\)

ĐPCM

<=> \(\frac{1}{4}\left(a^2+b^2-c^2\right)+\frac{1}{4}\left(b^2+c^2-a^2\right)+\frac{1}{4}\left(a^2+c^2-b^2\right)\ge\frac{\left(\frac{a+b+c}{2}\right)^2}{3}\)

<=> \(a^2+b^2+c^2\ge\frac{1}{3}\left(a+b+c\right)^2\)

<=> \(a^2+b^2+c^2\ge ab+bc+ac\)luôn đúng 

=> ĐPCM

Dấu bằng xảy ra khi a=b=c  => Tam giác ABC đều 

Vậy \(cotA+cotB+cotC\ge\frac{p^2}{3S}\)

Nguyễn Tất Đạt
24 tháng 7 2019 lúc 12:29

A B C H K L

Gọi AH,BK,CL là 3 đường cao của \(\Delta\)ABC. Khi đó:

\(\cot B=\frac{BH}{HA},\cot C=\frac{CH}{HA}\) suy ra \(\cot B+\cot C=\frac{BC}{HA}\)

Chứng minh tương tự rồi cộng theo vế ta được: 

\(2\left(\cot A+\cot B+\cot C\right)=\frac{BC}{HA}+\frac{CA}{KB}+\frac{AB}{LC}\)

\(=\frac{BC^2}{2S}+\frac{CA^2}{2S}+\frac{AB^2}{2S}\ge\frac{\left(BC+CA+AB\right)^2}{6S}=\frac{2p^2}{3S}\)(BĐT Schwartz)

Do đó \(\cot A+\cot B+\cot C\ge\frac{p^2}{3S}\)(đpcm).

Dấu "=" xảy ra khi và chỉ khi tam giác ABC là tam giác đều.

Mai Hương Lê Thị
Xem chi tiết
Nguyễn Hoàng Minh
22 tháng 11 2021 lúc 7:27

A

nguyễn quỳnh lưu
Xem chi tiết
Lê Hồng Ngọc
Xem chi tiết