Cho 3 số thực dương x,y,z thỏa mãn điều kiện x+y+z=3. Tìm giá trị lớn nhất của biểu thức: \(x^3+y^3+z^3+3\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\)
Với x,y,z là 3 số thực dương thỏa mãn x+y+z=3,tìm giá trị nhỏ nhất của biểu thức
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{z}+\sqrt{x}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
cho x,y,z là số dương thỏa mãn x+y+z ≤3 tìm giá trị lớn nhất của biểu thức
P=\(\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+2\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Ta có:
\(1.\sqrt{1+x^2}+1.\sqrt{2x}\le\sqrt{\left(1+1\right)\left(1+x^2+2x\right)}=\sqrt{2}\left(x+1\right)\)
Tương tự:
\(\sqrt{1+y^2}+\sqrt{2y}\le\sqrt{2}\left(y+1\right)\) ; \(\sqrt{1+z^2}+\sqrt{2z}\le\sqrt{2}\left(z+1\right)\)
Cộng vế:
\(P\le\sqrt{2}\left(x+y+z+3\right)+\left(2-\sqrt{2}\right)\left(x+y+z\right)\le\sqrt{2}\left(3+3\right)+\left(2-\sqrt{2}\right).3=6+3\sqrt{2}\)
\(P_{max}=6+3\sqrt{2}\) khi \(x=y=z=1\)
Cho 3 số thực dương \(x,y,z\) thỏa mãn \(x+y+z=3\). Tìm GTLN của biểu thức \(P=\dfrac{yz}{\sqrt{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt{\left(z+x\right)\left(z+y\right)}}\)
Áp dụng BĐT Cauchy cho cặp số dương \(\dfrac{1}{\left(z+x\right)};\dfrac{1}{\left(z+y\right)}\)
\(\dfrac{1}{\left(z+x\right)}+\dfrac{1}{\left(z+y\right)}\ge\dfrac{1}{2}.\dfrac{1}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\)
\(\Rightarrow\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\left(1\right)\)
Tương tự ta được
\(\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}\le\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}\left(2\right)\)
\(\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}\left(3\right)\)
\(\left(1\right)+\left(2\right)+\left(3\right)\) ta được :
\(P=\dfrac{yz}{\sqrt[]{\left(x+y\right)\left(x+z\right)}}+\dfrac{zx}{\sqrt[]{\left(y+z\right)\left(y+x\right)}}+\dfrac{xy}{\sqrt[]{\left(z+x\right)\left(z+y\right)}}\le\dfrac{2yz}{x+y}+\dfrac{2yz}{x+z}+\dfrac{2zx}{y+z}+\dfrac{2zx}{y+x}+\dfrac{2xy}{z+x}+\dfrac{2xy}{z+y}\)
\(\Rightarrow P\le2\left(x+y+z\right)=2.3=6\)
\(\Rightarrow GTLN\left(P\right)=6\left(tạix=y=z=1\right)\)
cho 3 số thực dương thỏa mãn điều kiện x+y+z=3. tìm giá trị lớn nhất của
P=\(x^3+y^3+z^3+3\left(\sqrt[3]{x}+\sqrt[3]{y}+\sqrt[3]{z}\right)\)
Cho 3 số thực dương x,y,z thoả mãn : \(x^2+y^2+z^2=48\) Tìm giá trị lớn nhất của biểu thức:
A=\(\sqrt{x^3+8}+\sqrt{x^3+8}+\sqrt{z^3+8}\)
Chắc bạn ghi nhầm căn thức thứ 2
\(A2\sqrt{2}=2\sqrt{\left(2x+4\right)\left(x^2-2x+4\right)}+2\sqrt{\left(2y+4\right)\left(y^2-2y+4\right)}+2\sqrt{\left(2z+4\right)\left(z^2-2z+4\right)}\)
\(A2\sqrt{2}\le2x+4+x^2-2x+4+2y+4+y^2-2y+4+2z+4+z^2-2z+4\)
\(A2\sqrt{2}\le x^2+y^2+z^2+24=72\)
\(A\le18\sqrt{2}\)
Dấu "=" xảy ra khi \(x=y=z=4\)
Cho các số nguyên dương x,y,z thỏa mãn x+y+z<=3
Tìm giá trị lớn nhất \(A=\sqrt{1+x^2}+\sqrt{1+y^2}+\sqrt{1+z^2}+3\left(\sqrt{x}+\sqrt{y}+\sqrt{z}\right)\)
Cho x,y,z là các số thực dương thỏa mãn x + y + xyz = z. tìm giá trị lớn nhất của biểu thức
\(P=\frac{2x}{\sqrt{\left(x^2+1\right)^3}}+\frac{x^2\left(1+\sqrt{yz}\right)^2}{\left(y+z\right)\left(x^2+1\right)}\)
với x,y,z là 3 số thực dương thỏa mãn x+y+z=3.Tìm GTNN của
P=\(\dfrac{x}{\sqrt{y}+\sqrt{z}}+\dfrac{y}{\sqrt{x}+\sqrt{z}}+\dfrac{z}{\sqrt{x}+\sqrt{y}}+\dfrac{3\left(x+y\right)\left(y+z\right)\left(z+x\right)}{32}\)
Cho các số dương x,y,z thỏa mãn: \(\left(\sqrt{x}-\sqrt{y}\right)^3+\left(\sqrt{y}-\sqrt{z}\right)^3+\left(\sqrt{z}-\sqrt{x}\right)^3=0\)
tính giá trị biểu thức: T=\(\left(\sqrt{x}-\sqrt{y}\right)^{2013}+\left(\sqrt{y}-\sqrt{z}\right)^{2013}+\left(\sqrt{z}-\sqrt{y}\right)^{2013}\)