Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Lê Thanh Ngọc
Xem chi tiết
nguyen thuy hang
Xem chi tiết
Pha Le Chy
Xem chi tiết
Ngọc Tuệ Đình Trần
Xem chi tiết
luna
Xem chi tiết
Akai Haruma
3 tháng 7 2019 lúc 22:37

Lời giải:

a)

\(=\frac{(\sqrt{x}+1)\sqrt{x}(\sqrt{x}-\sqrt{y}))\sqrt{x}+\sqrt{y})}{(x-y)x(\sqrt{x}+1)}=\frac{(\sqrt{x}+1)\sqrt{x}(x-y)}{(x-y)x\sqrt{x}+1)}=\frac{1}{\sqrt{x}}\)

b)

\(=\frac{(2-\sqrt{x}-\sqrt{x}-3)(2-\sqrt{x}+\sqrt{x}+3)}{1+2\sqrt{x}}=\frac{(-1-2\sqrt{x}).5}{2\sqrt{x}+1}=\frac{-5(2\sqrt{x}+1)}{2\sqrt{x}+1}=-5\)

queen
Xem chi tiết
Huyền
4 tháng 7 2019 lúc 15:29

\(a,\frac{\left(\sqrt{x}+1\right)\cdot\sqrt{x}\left(\sqrt{x}-\sqrt{y}\right)\left(\sqrt{x}+\sqrt{y}\right)}{\left(x-y\right)\sqrt{x}\left(x+1\right)}\)\(=\frac{\left(\sqrt{x}+1\right)\sqrt{x}\left(x-y\right)}{\left(x-y\right)\sqrt{x} \left(x+1\right)}\)\(=\frac{\sqrt{x}+1}{x+1}\)

\(b,\frac{\left(2-\sqrt{x}\right)^2-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{4+x-4\sqrt{x}-\sqrt{x}-3}{1+2\sqrt{x}}=\frac{1+x-5\sqrt{x}}{1+2\sqrt{x}}\)

Trần Huỳnh Như
Xem chi tiết
online online
14 tháng 8 2016 lúc 19:33

đầu tiên phải sửa điều kiện của a đó là \(a\ne9\)

 

Học Chăm Chỉ
Xem chi tiết
tranhuuphuoc
Xem chi tiết
Hoàng Thị Lan Hương
1 tháng 8 2017 lúc 10:45

ĐK  \(\hept{\begin{cases}a\ge0\\a\ne1\end{cases}}\)

Ta có \(P=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(\frac{\left(1-\sqrt{a}\right)\left(a+\sqrt{a}+1\right)}{1-\sqrt{a}}+\sqrt{a}\right).\left(\frac{\left(1+\sqrt{a}\right)\left(a-\sqrt{a}+1\right)}{1+\sqrt{a}}-\sqrt{a}\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}:\left[\left(a+2\sqrt{a}+1\right).\left(a-2\sqrt{a}+1\right)\right]\)

\(=\frac{\sqrt{a}\left(1-a\right)^2}{1+a}.\frac{1}{\left(\sqrt{a}+1\right)^2\left(\sqrt{a}-1\right)^2}=\frac{\sqrt{a}}{1+a}\)