đầu tiên phải sửa điều kiện của a đó là \(a\ne9\)
đầu tiên phải sửa điều kiện của a đó là \(a\ne9\)
Cho bieu thuc p=\(\left(\frac{\sqrt{a}}{2}-\frac{1}{2\sqrt{a}}\right)^2.\left(\frac{\sqrt{a}}{\sqrt{a}+1}-\frac{\sqrt{a}+1}{\sqrt{a}-1}\right)\)
a/tim dkxd va rut gon p
b/ tìm giá trị của a để p<0
Rut gon cac bieu thuc sau :
1)\(\frac{1}{a+b}.\sqrt{a^4\left(a-b\right)^2}\)
2)\(\sqrt{9a^2.\left(b^2-4b+4\right)}\)
3)\(\sqrt{13a}.\sqrt{\frac{52}{a}}\) với a ≦ 0
4) 4x- \(\sqrt{8}-\sqrt{a^2}\) với a > 1
Rut gon bieu thuc
1)\(\left(a-b\right).\sqrt{\frac{ab}{\left(a-b\right)^2}}\) voi a \(\ne\) b
2)\(\frac{x-y}{y}.\sqrt{\frac{y^4}{x^2-2xy+y^2}}\) voi x\(\ne\) y
Rút gọn biểu thức :
\(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}.\sqrt{2+\sqrt{3}}\)
\(\left[\left(a-b\right)\sqrt{\frac{a+b}{a-b}}+a-b\right]\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)với a>b>0
Chứng minh rằng :
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)
\(\frac{a^3-a--2b-\frac{b^2}{a}}{\left(\frac{1}{\sqrt{a}}-\sqrt{\frac{1}{a}+\frac{b}{a^2}}\right)\left(\sqrt{a}+\sqrt{a+b}\right)}:\left(\frac{a^3+a^2+ab+a^2b}{a^2-b^2}+\frac{b}{a-b}\right)\)
Cho biểu thức
A= \(\left(\frac{x-5\sqrt{x}}{x-25}-1\right):\left(\frac{25-x}{x+2\sqrt{x}-15}-\frac{\sqrt{x}+3}{\sqrt{x}+5}+\frac{\sqrt{x}-5}{\sqrt{x}-3}\right)\)
a, Rút gọn A
b, Tìm x để A<1
cho biểu thức \(P=\left(\frac{1}{1-\sqrt{a}}-\frac{1}{\sqrt{a}}\right):\left(\frac{2a+\sqrt{a}-1}{1-a}+\frac{2a\sqrt{a}+a-\sqrt{a}}{1+a\sqrt{a}}\right)\)
a. rút gọn P KQ=\(\frac{1-\sqrt{a}+a}{\sqrt{a}}\)
b. tính P khi \(a=\frac{\sqrt{3+\sqrt{5}}\left(\sqrt{6}+\sqrt{2}\right)\left(\sqrt{10}+\sqrt{2}\right)\left(3-\sqrt{5}\right)}{2\sqrt{3+\sqrt{5-\sqrt{13-\sqrt{48}}}}}+1\) KQ =7/3
c. tìm x để P>x
lm hooj t câu c vs câu a,b, t lm hết r
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)
GIúp mình với
Rút gọn các biểu thức sau :
a)\(\left[\left(a-b\right)\sqrt{\frac{a+b}{a-b}}+a-b\right]\left(a-b\right)\left(\sqrt{\frac{a+b}{a-b}}-1\right)\)với a > b > 0
b)\(\frac{\sqrt{7-4\sqrt{3}}}{\sqrt{2-\sqrt{3}}}.\sqrt{2+\sqrt{3}}\)
Chứng minh rằng
\(\left(4+\sqrt{15}\right)\left(\sqrt{10}-\sqrt{6}\right)\sqrt{4-\sqrt{15}}=2\)