Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Hòa Lê
Xem chi tiết
Lâm Thảo Linh
Xem chi tiết
Yoriichi Tsugikuni
Xem chi tiết
Toru
11 tháng 11 2023 lúc 20:55

Ta có:

\(\left|5a-6b+300\right|^{2011}\ge0\forall a,b\)

\(\left(2a-3b\right)^{2010}\ge0\forall a,b\)

\(\Rightarrow\left|5a-6b+300\right|^{2011}+\left(2a-3b\right)^{2010}\ge0\forall a,b\)

Mặt khác: \(\left|5a-6b+300\right|^{2011}+\left(2a-3b\right)^{2010}=0\)

nên: \(\left\{{}\begin{matrix}5a-6b+300=0\\2a-3b=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5a-6b=-300\\2\cdot\left(2a-3b\right)=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}5a-6b=-300\\4a-6b=0\end{matrix}\right.\)

\(\Rightarrow5a-6b-\left(4a-6b\right)=-300-0\)

\(\Rightarrow5a-6b-4a+6b=-300\)

\(\Rightarrow a=-300\)

Khi đó: \(2\cdot\left(-300\right)-3b=0\)

\(\Rightarrow-3b=600\)

\(\Rightarrow b=-200\)

Vậy \(a=-300;b=-200\)

\(\text{#}Toru\)

Nguyễn Lê Phước Thịnh
11 tháng 11 2023 lúc 20:53

\(\left|5a-6b+300\right|^{2011}>=0\forall a,b\)

\(\left(2a-3b\right)^{2010}>=0\forall a,b\)

Do đó: \(\left|5a-6b+300\right|^{2011}+\left(2a-3b\right)^{2010}>=0\forall a,b\)

Dấu '=' xảy ra khi \(\left\{{}\begin{matrix}5a-6b+300=0\\2a-3b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5a-6b=-300\\2a-3b=0\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}5a-6b=-300\\4a-6b=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}a=-300\\3b=2a\end{matrix}\right.\)

=>\(\left\{{}\begin{matrix}a=-300\\b=\dfrac{2}{3}a=\dfrac{2}{3}\cdot\left(-300\right)=-200\end{matrix}\right.\)

Buì Đức Quân
Xem chi tiết
Tran Duc Dung
Xem chi tiết
Đoàn Tuấn Khải
28 tháng 11 2015 lúc 18:30

Tính chất dãy tỉ số bằng nhau ak

 

Trịnh Thành Công
28 tháng 11 2015 lúc 18:48

Câu này sai đề lúc nãy tớ tính ra mà ra số nguyên

lê khánh linh
Xem chi tiết
Đinh Tuấn Việt
17 tháng 7 2015 lúc 16:31

\(\text{Từ 2a = 3b nên 2a - 3b = 0 }\)

Do đó \(3a-3b+c=0+c=c=6\)

Vậy \(2a=3b=5c=30\)

Suy ra \(a=30:2=15\)

           \(b=30:3=10\)

               Vậy a = 15 ; b = 10 và c = 6

Trần Tuyết Như
17 tháng 7 2015 lúc 16:49

để mk giúp bn chuyển sang tỉ lệ thức:

     2a = 3b = 5c   hay  2a = 3b, 3b = 5c

 =>  \(\frac{a}{3}=\frac{b}{2};\frac{b}{5}=\frac{c}{3}\)   =>  \(\frac{a}{15}=\frac{b}{10}=\frac{c}{6}\)

rồi giải theo tỉ lệ thức 

tranbinh1512
Xem chi tiết
Noridomotoji Katori
Xem chi tiết
Ngô Thái Duy Anh
Xem chi tiết
Xyz OLM
26 tháng 12 2020 lúc 22:00

Ta có \(\hept{\begin{cases}\left|2a-3b+500\right|^{2021}\ge0\forall a;b\\\left(5a-6b\right)^{2020}\ge0\forall a;b\end{cases}}\Rightarrow\left|2a-3b+500\right|^{2021}+\left(5a-6b\right)^{2020}\ge0\forall a;b\)

Dấu "=" xảy ra <=> 

\(\hept{\begin{cases}2a-3b=500\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}4a-6b=1000\\5a-6b=0\end{cases}}\Rightarrow\hept{\begin{cases}a=-1000\\b=-\frac{2500}{3}\end{cases}}\)

Vậy a = -1000 ; b = -2500/3 là giá trị cần tìm

Khách vãng lai đã xóa
Vũ Phương Mai
1 tháng 1 2022 lúc 18:56
Ko bít Tự làm
Khách vãng lai đã xóa
Lê Thanh Thảo
1 tháng 1 2022 lúc 19:24

Ko bít Tự làm

Khách vãng lai đã xóa