Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
ly thi ngoc tu

Những câu hỏi liên quan
Vũ Lê Tường Vy
Xem chi tiết
Nguyễn Lê Phước Thịnh
12 tháng 10 2021 lúc 21:53

Câu 2: 

\(\dfrac{7}{9}\cdot\dfrac{3}{35}=\dfrac{1}{5}\cdot\dfrac{1}{3}=\dfrac{1}{15}\)

\(\dfrac{9}{22}\cdot55=\dfrac{9\cdot55}{22}=\dfrac{9\cdot5}{2}=\dfrac{45}{2}\)

 

Trần Đại Thành Danh
Xem chi tiết
Trần Đại Thành Danh
13 tháng 5 2016 lúc 10:26

12 : 3 = 4 x 4 = 16 + 16 = 32 + 17 + 17 + 17 = 83

Trần Ngọc Hương Giang
Xem chi tiết
soyeon_Tiểu bàng giải
15 tháng 6 2016 lúc 13:11

3/14 × 5/17 + 11/14 × 5/17 + 12/17 × 5/16 + 12/17 × 11/16

= 5/17 × ( 3/14 + 11/14) + 12/17 × ( 5/16 + 11/16)

= 5/17 × 1 + 12/17 × 1

= 5/17 + 12/17

= 1

Châu Lê Thị Huỳnh Như
15 tháng 6 2016 lúc 23:14

3/14 × 5/17 + 11/14 × 5/17 + 12/17 × 5/16 + 12/17 × 11/16

= 5/17 × ( 3/14 + 11/14) + 12/17 × ( 5/16 + 11/16)

= 5/17 × 1 + 12/17 × 1

= 5/17 + 12/17

= 1

nguyễn trang
Xem chi tiết
Nahayumi Hana
3 tháng 5 2017 lúc 21:27

\(x:x-54\cdot17\cdot\frac{6}{17}\cdot3\cdot4=12\)

\(x:x=12+\left(54\cdot17\cdot\frac{6}{17}\cdot3\cdot4\right)\)

x:x = ?

còn lại lm giúp mk nhá +0

Hà ngọc bích hằng
Xem chi tiết
Phùng Tuệ Minh
18 tháng 2 2019 lúc 14:13

( Mik làm mấy phần mà bạn dưới chưa làm)

11) xy+x+y=9

\(\Leftrightarrow\) xy+x+y+1=9+1

\(\Leftrightarrow\left(xy+x\right)+\left(y+1\right)\)=10

\(\Leftrightarrow x\left(y+1\right)+\left(y+1\right)=10\)

\(\Leftrightarrow\) (x+1)(y+1)=10=1.10=10.1=-1.-10=-10.-1=2.5=5.2=-2.-5=-5.-2

\(\Rightarrow\) TH1: x+1=1 ; y+1=10

\(\Leftrightarrow x=0;y=9\)

TH2: x+1=10;y+1=1

\(\Leftrightarrow\)x=9;y=0

TH3: x+1=-1;y+1=-10

\(\Leftrightarrow\) x=-2;y=-11

...........

Vậy:........

( Bạn tự làm nốt chứ dài quá, mik chỉ hướng dẫn cách làm bài thôi)

Nguyễn Thành Trương
17 tháng 2 2019 lúc 18:20

1) -x = -7

=> x = 7

2) - x = 17

=> x = - 17

3) |x| = 17

=> x = ±17

4) -(-x) = |-17|

=> x = 17

5) - 19 - x = 17

=> - x = 17 + 19

=> x = - 36

6) - 19 - x = - 17

=> - x = - 17 + 19

=> -x = 2

=> x = - 2

7) - 5 - (10 - x) = 7

=> - 5 - 10 + x = 7

=> - 15 + x = 7

=> x = 7 + 15

=> x = 22

8) |x + 3| + 7 = 12

=> |x + 3| = 12 - 7

=> |x + 3| = 5

=> x + 3 = 5 hoặc x + 3 =- 5

=> x = 2 hoặc x = - 8

9) 2 - |x - 2| = x

=> - |x - 2| - x = - 2

TH1: x >= 2

- (x - 2) - x = - 2

=> - x + 2 - x =- 2

=> - 2x = - 4

=> x = 2 (nhận)

TH2: x < 2

-[-(x - 2)] - x = - 2

=> x - 2 - x = - 2

=> 0x = 0 (vô số nghiệm)

Nguyễn Cẩm Hương
Xem chi tiết
nguyen mai thi
19 tháng 3 2019 lúc 18:30

viết sai đầu bài rùi

Nguyễn Viết Bảo Trung
28 tháng 3 2020 lúc 16:19

chú ý viết đề bài cẩn thận

Khách vãng lai đã xóa
Lại Phương Chi
Xem chi tiết
phuc
27 tháng 7 2023 lúc 17:53

có đúng ko

 

Vinne
Xem chi tiết
Nguyễn Hoàng Minh
6 tháng 9 2021 lúc 16:03

\(x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\cdot\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\\ \Leftrightarrow x^3=6+3x\sqrt[3]{1}\\ \Leftrightarrow x^3-3x=6\)

\(y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17-12\sqrt{2}\right)\left(17+12\sqrt{2}\right)}\left(\sqrt[3]{17-12\sqrt{2}}+\sqrt[3]{17+12\sqrt{2}}\right)\\ \Leftrightarrow y^3=34+3x\sqrt[3]{1}\\ \Leftrightarrow y^3-3y=34\)

Thay vào P, ta được

\(P=x^3+y^3-3x-3y+1979\\ P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979\\ P=6+34+1979=2019\)

 

Nguyễn Việt Lâm
6 tháng 9 2021 lúc 16:00

\(x^3=6+3\sqrt[3]{\left(3+2\sqrt[]{2}\right)\left(3-2\sqrt[]{2}\right)}\left(\sqrt[3]{3+2\sqrt[]{2}}+\sqrt[3]{3-2\sqrt[]{2}}\right)\)

\(\Rightarrow x^3=6+3x\)

\(\Rightarrow x^3-3x=6\)

Tương tự:

\(y^3=34+3\sqrt[3]{\left(17+12\sqrt[]{2}\right)\left(17-12\sqrt[]{2}\right)}\left(\sqrt[3]{17+12\sqrt[]{2}}+\sqrt[3]{17-12\sqrt[]{2}}\right)\)

\(\Rightarrow y^3=34+3y\)

\(\Rightarrow y^3-3y=34\)

Do đó:

\(P=\left(x^3-3x\right)+\left(y^3-3y\right)+1979=6+34+1979=...\)

Võ Thùy Trang
Xem chi tiết
Lấp La Lấp Lánh
5 tháng 10 2021 lúc 21:54

\(x=\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\)

\(\Rightarrow x^3=3+2\sqrt{2}+3-2\sqrt{2}+3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}+\sqrt[3]{3-2\sqrt{2}}\right)\)

\(=6+3\sqrt[3]{9-8}.x=6+3x\)

\(\Rightarrow x^3-3x=6\)

\(y=\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\)

\(\Rightarrow y^3=17+12\sqrt{2}+17-12\sqrt{2}+3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}+\sqrt[3]{17-12\sqrt{2}}\right)\)

\(=34+3\sqrt[3]{289-288}.y=34+3y\)

\(\Rightarrow y^3-3y=34\)

\(P=x^3+y^3-3\left(x+y\right)+2009=\left(x^3-3x\right)+\left(y^3-3y\right)+2009\)

\(=6+34+2009=2049\)

Trúc Giang
Xem chi tiết
Lê Thị Thục Hiền
18 tháng 6 2021 lúc 15:37

Có \(x^3=3+2\sqrt{2}-3\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)-\left(3-2\sqrt{2}\right)\)

\(\Leftrightarrow x^3=4\sqrt{2}-3x\) \(\Leftrightarrow x^3+3x=4\sqrt{2}\) (1)

Có \(y^3=17+12\sqrt{2}-3\sqrt[3]{\left(17+12\sqrt{2}\right)\left(17-12\sqrt{2}\right)}\left(\sqrt[3]{17+12\sqrt{2}}-\sqrt[3]{17-12\sqrt{2}}\right)-\left(17-12\sqrt{2}\right)\)

\(\Leftrightarrow y^3=24\sqrt{2}-3y\) \(\Leftrightarrow y^3+3y=24\sqrt{2}\) (2)

Từ (1) (2)\(\Rightarrow x^3+3x-y^3-3y=-20\sqrt{2}\)

Có \(M=\left(x-y\right)^3+3\left(x-y\right)\left(xy+1\right)=\left(x-y\right)\left[\left(x-y\right)^2+3\left(xy+1\right)\right]\)

\(=\left(x-y\right)\left(x^2+xy+y^2+3\right)=x^3-y^3+3\left(x-y\right)=-20\sqrt{2}\)

Vậy \(M=-20\sqrt{2}\)

missing you =
18 tháng 6 2021 lúc 15:42

theo bài ra

\(x=\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\)

\(=>x^3=\left(\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right)^3\)

\(x^3=4\sqrt{2}-3\left[\left(\sqrt[3]{3+2\sqrt{2}}\right)\left(\sqrt[3]{3-2\sqrt{2}}\right)\right]\left[\sqrt[3]{3+2\sqrt{2}}-\sqrt[3]{3-2\sqrt{2}}\right]\)

\(x^3=4\sqrt{2}-3\left[\sqrt[3]{\left(3+2\sqrt{2}\right)\left(3-2\sqrt{2}\right)}\right].x\)

\(x^3=4\sqrt{2}-3.\left[\sqrt[3]{9-\left(2\sqrt{2}\right)^2}\right]x\)

\(x^3=4\sqrt{2}-3.1x\)

\(x^3=4\sqrt{2}-3x\)

\(< =>x^3+3x-4\sqrt{2}=0\)

rồi làm y tương tự rồi thế vào M là ra