Cho tam giác ABC nhọn có 2 đường cao BD và CE. Gọi M,N lần lượt là trung điểm của BC và DE
a) CM: DM=1/2 BC
b) Tam giác DME cân
cho tam giác ABC nhọn,có 2 đường cao BD và CE .Gọi M,N lần lượt là trung điểm của BC vàDE
Chứng Minh rằng:a)DM=1/2 BC
b) TAM GIÁC DME CÂN
c)MN VUÔNG GÓC VỚI DE
Cho tam giác ABC nhọn có hai đường cao BD và CE. Gọi M, N là trung điểm của BD và CE. Chứng minh rằng:
1)DM = ½ BC
2)Tam giác DME cân
3)MN vuông vóc với DE
Help me
Nếu c/m được DM=1/2(BC) => BD=BC => vô lý vì trong tam giác vuông BCD có cạnh huyền BC = cạnh góc vuông BD à? => xem lại đề bài
Tham khảo đề bài và bài làm tại link:
Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC nhọn có hai đường cao BD và CE. Gọi M, N là trung điểm của BD và CE. Chứng minh rằng:
1)DM = ½ BC
2)Tam giác DME cân
3)MN vuông vóc với DE
Help me. mik tick đủ cho////
Em sai đề. Tham khảo đề và bài làm tại link: Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
Cho tam giác ABC nhọn có 2 đường cao BD, CE. Gọi M ,N theo thứ tự là trung điểm của BC,DE. Chứng minh:
A) DM = 1/2 BC
B) Tam giác DME cân
C) MN vuông với DE
a) Xét \(\Delta\)BDC vuông tại D ( Vì BD là đường cao tam giác ABC )
có: M là trung điểm BC ( giả thiết)
=> DM là đường trung tuyến
=> \(DM=\frac{1}{2}BC\)(1)
b) Tương tự EM là đường trung tuyến của \(\Delta\)vuông BEC
=> \(EM=\frac{1}{2}BC\) (2)
Từ (1) ; (2) => DM = EM
=> \(\Delta\)DME cân tại M
c) \(\Delta\)DME cân tại M ( theo câu b)
có N là trung điểm của DE nên MN là đường trung tuyến của \(\Delta\)DME cân.
=> MN là đường cao. ( Trong tam giác cân đường trung tuyến đồng thời là đường cao , phân giác ,...)
Bài 1 : Cho tam giác ABC có ba góc nhọn , kẻ hai đường cao BD và CE . Gọi M , N lần lượt là hình chiếu của B,C trên đường thẳng DE
1.Tứ giác BMNC là hình gì?Vì sao
2.Gọi O là trung điểm của đoạn thẳng BC. CMR tam giác DOE là tam giác cân
3.Gọi P là trung điểm của đoạn thẳng DE . CMR \(OP=\dfrac{BM+CN}{2}\)
Bài 2 : Tìm số nguyên tố p để \(p^3+p^2+11p+2\) là số nguyên tố
1.
a. CN và BM cùng vuông góc DE nên CN//BM
\(\Rightarrow\) BMNC là hình thang vuông tại M và N
b. Theo giả thiết BD vuông góc CA \(\Rightarrow\Delta BDC\) vuông tại D
\(\Rightarrow DO\) là trung tuyến ứng với cạnh huyền BC \(\Rightarrow DO=\dfrac{1}{2}BC\)
Tương tự trong tam giác vuông BEC thì EO là trung tuyến ứng với cạnh huyền
\(\Rightarrow EO=\dfrac{1}{2}BC\Rightarrow DO=EO\Rightarrow\) tam giác cân tại O
c. Tam giác DEO cân tại O, mà P là trung điểm DE \(\Rightarrow OP\) là trung tuyến đồng thời là đường cao
\(\Rightarrow OP\perp DE\) \(\Rightarrow OP//CN//BM\)
Mà O là trung điểm BC \(\Rightarrow OP\) là đường trung bình hình thang BMNC
\(\Rightarrow OP=\dfrac{CN+BM}{2}\)
2. Đặt biểu thức là A
Với \(p=2\) ko thỏa mãn
Với \(p=3\Rightarrow A=71\) là SNT
Với \(p>3\) do p là SNT nên p chỉ có 2 dạng \(p=3k+1\) hoặc \(3k+2\)
- Với \(p=3k+1\Rightarrow p^3\) chia 3 dư 1, \(p^2\) chia 3 dư 1, \(11p=9p+2p\) chia 3 dư 2
\(\Rightarrow A\) chia 3 dư 1+1+2+2=6 chia hết cho 3 (ko là SNT) loại
- Với \(p=3k+2\) tương tự, \(p^3\) chia 3 dư 2, \(p^2\) chia 3 dư 1, \(11p\) chia 3 dư 1
\(\Rightarrow\) A chia 3 dư 2+1+1+2=6 vẫn chia hết cho 3 (loại)
Vậy \(p=3\) là giá trị duy nhất thỏa mãn
SNT thì thường quy về xét số dư thôi bạn, mà dễ nhất thường là số dư cho 3 nên đầu tiên cứ kiểm tra với số 3
Cho tam giác ABC nhọn, 2 đường cao BD và CE.Gọi M;N lần lượt là trung điểm của BC và DE
1)Chứng minh \(DE=\frac{1}{2}BC\)
2)Chứng minh tam giác DME cân
3)Chứng minh MN vuông góc DE
Câu hỏi của Lan nhi Duong nguyễn - Toán lớp 8 - Học toán với OnlineMath
1) cho tam giác ABC,có AB< AC ,trên 2 cạnh AB và AC lấy D và E sao cho BD = CE ,gọi M ,N,I lần lượt là trung điểm của BC ,DE ,CD đoạn thẳng MN cắt ABvaAC tại P và Q
a)cm tam giác MIN cân
b)cm tam gia DME cân
c)cm MNsong song với đường phân giác góc A của tam giác ABC
Bài 1: Cho tam giác ABC cân tại A có đường phân giác CD. Qua D kẻ tia DF vuông góc với DC; DE song song với BC ( F thuộc BC; E thuộc AC ). Gọi M là giao điểm của DE với tia phân giác của góc BAC. CMR:
1) CF= 2BD
2) DM= 1/4 CF
Bài 2: Cho tam giác ABC cân tại A. Trên cạnh BC lấy điểm D, trên tia đối của tia CB lấy điểm E sao cho BD=CE. Các đường thẳng vuông góc BC kẻ từ D và E cắt AB và AC lần lượt ở M và N. CMR:
1) DM=EN
2) Đường thẳng BC cắt MN tại I là trung điểm của MN
3) Đường thẳng vuông góc với MN tại I luôn đi qua một điểm cố định khi D thay đổi trên cạnh BC
Bài 3: Cho tam giác ABC nhọn. Về phía ngoài của tam vẽ các tam giác vuông cân ABD và ACE đều vuông tại A. Gọi M và N lần lượt là trung điểm của BD và CE, P là trung trung điểm của BC. CMR: Tam giác PMN vuông cân
Cho tam giác nhọn ABC (AB<AC). Các đường cao BD CE cắt nhau tại H. Gọi M,I lần lượt là trung điểm của BC và DE ; AM cắt ED tại N, AI cắt BC tại K.
a) CM: tam giác AID đồng dạng tam giác AMB
b) CM: NK//AH