Phép nhân và phép chia các đa thức

Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài
Kamato Heiji

Bài 1 : Cho tam giác ABC có ba góc nhọn , kẻ hai đường cao BD và CE . Gọi M , N lần lượt là hình chiếu của B,C trên đường thẳng DE

1.Tứ giác BMNC là hình gì?Vì sao

2.Gọi O là trung điểm của đoạn thẳng BC. CMR tam giác DOE là tam giác cân

3.Gọi P là trung điểm của đoạn thẳng DE . CMR \(OP=\dfrac{BM+CN}{2}\)

Bài 2 : Tìm số nguyên tố p để \(p^3+p^2+11p+2\) là số nguyên tố

Nguyễn Việt Lâm
22 tháng 12 2020 lúc 21:05

1.

a. CN và BM cùng vuông góc DE nên CN//BM

\(\Rightarrow\) BMNC là hình thang vuông tại M và N

b. Theo giả thiết BD vuông góc CA \(\Rightarrow\Delta BDC\) vuông tại D

\(\Rightarrow DO\) là trung tuyến ứng với cạnh huyền BC \(\Rightarrow DO=\dfrac{1}{2}BC\)

Tương tự trong tam giác vuông BEC thì EO là trung tuyến ứng với cạnh huyền

\(\Rightarrow EO=\dfrac{1}{2}BC\Rightarrow DO=EO\Rightarrow\) tam giác cân tại O

c. Tam giác DEO cân tại O, mà P là trung điểm DE \(\Rightarrow OP\) là trung tuyến đồng thời là đường cao

\(\Rightarrow OP\perp DE\) \(\Rightarrow OP//CN//BM\)

Mà O là trung điểm BC \(\Rightarrow OP\) là đường trung bình hình thang BMNC

\(\Rightarrow OP=\dfrac{CN+BM}{2}\)

2. Đặt biểu thức là A

Với \(p=2\) ko thỏa mãn

Với \(p=3\Rightarrow A=71\) là SNT

Với \(p>3\) do p là SNT nên p chỉ có 2 dạng \(p=3k+1\) hoặc \(3k+2\)

- Với \(p=3k+1\Rightarrow p^3\) chia 3 dư 1, \(p^2\) chia 3 dư 1, \(11p=9p+2p\) chia 3 dư 2

\(\Rightarrow A\) chia 3 dư 1+1+2+2=6 chia hết cho 3 (ko là SNT) loại

- Với \(p=3k+2\) tương tự, \(p^3\) chia 3 dư 2, \(p^2\) chia 3 dư 1, \(11p\) chia 3 dư 1

\(\Rightarrow\) A chia 3 dư 2+1+1+2=6 vẫn chia hết cho 3 (loại)

Vậy \(p=3\) là giá trị duy nhất thỏa mãn

Nguyễn Việt Lâm
22 tháng 12 2020 lúc 21:16

SNT thì thường quy về xét số dư thôi bạn, mà dễ nhất thường là số dư cho 3 nên đầu tiên cứ kiểm tra với số 3


Các câu hỏi tương tự
Trần Xuân Tiệp
Xem chi tiết
lê hoàng quân
Xem chi tiết
Đoàn Duy Anh
Xem chi tiết
Kitana
Xem chi tiết
Dạ Thiên
Xem chi tiết
Trần Bảo Hân
Xem chi tiết
Aquarius
Xem chi tiết
Trịnh tổng
Xem chi tiết
nhattien nguyen
Xem chi tiết