Cho \(A=a\sqrt{a}+\sqrt{ab}\) , \(B=b\sqrt{b}+\sqrt{ab}\)
Chứng minh rằng nếu \(\sqrt{a}+\sqrt{b}\) và \(\sqrt{ab}\) là những số hữu tỉ thì tổng \(A+B\) và tích \(A.B\) cũng là những số hữu tỉ.
Cho \(A=a\sqrt{a}+\sqrt{ab}\) , \(B=b\sqrt{b}+\sqrt{ab}\) \(\left(a,b>0\right)\)
CMR: nếu \(\sqrt{a}+\sqrt{b}\) và \(\sqrt{ab}\) là những số hữu tỉ thì tổng \(A+B\) và tích \(A.B\) cũng là những số hữu tỉ.
Cho \(A=a\sqrt{a}+\sqrt{ab}\)và \(B=b\sqrt{b}+\sqrt{ab}\)với a > 0 , b > 0
CMR nếu \(\sqrt{a}+\sqrt{b}\)và \(\sqrt{ab}\)đều là các số hữu tỉ thì \(A+B\)và \(A.B\)cũng là các số hữu tỉ
Help me !!!!
Ta có :
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=a\sqrt{a}+b\sqrt{b}+2\sqrt{ab}\)
\(=\)\(\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]+2\sqrt{ab}\)
\(A.B=\sqrt{ab}\left(\sqrt{ab+1}\right)+\sqrt{ab}\left(\sqrt{a}+\sqrt{b}\right)\left[\left(\sqrt{a}+\sqrt{b}\right)^2-3\sqrt{ab}\right]\)
Đặt \(\sqrt{a}+\sqrt{b}=x;\)\(\sqrt{ab}=y\)\(\left(x;y\in Q\right)\)thì :
\(A+B=x\left(x^2-3y\right)+2y\)
\(A.B=y\left(y+1\right)+xy\left(x^2-3y\right)\)
\(\Rightarrow\)Các đa thức này là các số hữa tỉ \(\left(đpcm\right)\)
Chứng minh rằng nếu a,b,c là các số hữu tỉ thì \(\sqrt{a},\sqrt{b},\sqrt{c}\) cũng là các số hữa tỉ
Chứng minh rằng nếu a; b; c là các số hữu tỉ thì\(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ
cho a,b,c là các số hữu tỉ không âm và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ. Chứng minh \(\sqrt{a},\sqrt{b},\sqrt{c}\)là các số hữu tỉ
Chứng minh rằng nếu a, b, c và \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là các số hữu tỉ
Câu hỏi của ka ding - Toán lớp 9 - Học toán với OnlineMath Em xem lbaif ở link này nhé!
Cho : A =\(a\sqrt{a}\) + \(\sqrt{ab}\) và B = \(b\sqrt{b}\) + \(\sqrt{ab}\) với a ;b > 0 . CMR nếu và đều là các số hữu tỉ thì A + B và A.B cũng là số hữu tỉ.
Help me !!!
Lời giải:
Ta có:
\(A+B=a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\)
\(=(\sqrt{a})^3+(\sqrt{b})^3+2\sqrt{ab}\)
\(=(\sqrt{a}+\sqrt{b})(a-\sqrt{ab}+b)+2\sqrt{ab}\)
\(=(\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]+2\sqrt{ab}\)
Ta thấy \(\sqrt{a}+\sqrt{b}\in\mathbb{Q}; \sqrt{ab}\in\mathbb{Q}\) nên:
\((\sqrt{a}+\sqrt{b})[(\sqrt{a}+\sqrt{b})^2-3\sqrt{ab}]\in\mathbb{Q}\) và \(2\sqrt{ab}\in\mathbb{Q}\)
Do đó: \(A+B\in\mathbb{Q}\)
Mặt khác:
\(AB=\sqrt{a}(a+\sqrt{b}).\sqrt{b}(b+\sqrt{a})\)
\(=\sqrt{ab}(a+\sqrt{b})(b+\sqrt{a})\)
\(=\sqrt{ab}(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab})\)
\(=\sqrt{ab}(A+B)\)
Do $A+B$ là số hữu tỉ (cmt) và $\sqrt{ab}$ cũng là số hữu tỉ, nên \(AB\) là số hữu tỉ.
Bác Akai Haruma làm nhầm đoạn cuối. Chắc do học nhiều nên mệt. Mình đại diện các bạn khác tiếp sức cho bác.
\(AB=\sqrt{ab}\left(a+\sqrt{b}\right)\left(b+\sqrt{a}\right)\)
\(=\sqrt{ab}\left(ab+a\sqrt{a}+b\sqrt{b}+\sqrt{ab}\right)\)
\(=\sqrt{ab}\left(ab-\sqrt{ab}+a\sqrt{a}+\sqrt{ab}+b\sqrt{b}+\sqrt{ab}\right)\)
\(=\sqrt{ab}\left(ab-\sqrt{ab}+A+B\right)\)
Vì \(\left\{{}\begin{matrix}A+B\in Q\\\sqrt{ab}\in Q\\ab\in Q\end{matrix}\right.\)
\(\Rightarrow AB\in Q\)
Mình sửa lại đề chút nhé :
CMR : nếu \(\sqrt{a}+\sqrt{b}\) và \(\sqrt{ab}\) đều là các số hữu tỉ thì A + B và A.B cũng là các số hữu tỉ.
Akai Haruma Lightning Farron......
Nếu \(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}=a+b\sqrt{3}\)với a;b là các số hữu tỉ thì ab=....
Cho a, b là số hữu tỉ, c, d là số hữu tỉ dương và c, d không là bình phương của số hữu tỉ nào. Chứng minh rằng nếu:
\(a+\sqrt{c}=b+\sqrt{d}\) thì \(\hept{\begin{cases}a=b\\c=d\end{cases}}\)