Cho a,b,c là 3 số hữu tỉ thỏa mãn điều kiện: ab+bc+ac=1
Chứng minh: \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là 1 số hữu tỉ
Bài 1 : Cho a,b,c là các số hữu tỉ thỏa mãn ab+bc+ca=1
CM : Q=\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là 1 số hữu tỉ
1/ Cho các số thực dương a,b với a khác b. Chứng minh đẳng thức sau:
\(\frac{\frac{\left(a-b\right)^3}{\left(\sqrt{a}-\sqrt{b}\right)^3}-b\sqrt{b}+2a\sqrt{a}}{a\sqrt{a}-b\sqrt{b}}+\frac{3a+3\sqrt{ab}}{b-a}=0\)
2/ Cho hai số thực a,b sao cho \(\left|a\right|\ne\left|b\right|\) và ab \(\ne\) 0 thỏa mãn điều kiện:
\(\frac{a-b}{a^2+ab}+\frac{a+b}{a^2-ab}=\frac{3a-b}{a^2-b^2}\). Tính giá trị của biểu thức \(P=\frac{a^3+2a^2b+3b^3}{2a^3+ab^2+b^3}\)
Bài 1 : Cho 3 số dương a,b,c thỏa mãn : \(b\ne c;\sqrt{a}+\sqrt{b}\ne\sqrt{c}\) và \(a+b=\left(\sqrt{a}+\sqrt{b}-\sqrt{c}\right)^2\)
CMR : \(\frac{a+\left(\sqrt{a}-\sqrt{c}\right)^2}{b+\left(\sqrt{b}-\sqrt{c}\right)^2}=\frac{\sqrt{a}-\sqrt{c}}{\sqrt{b}-\sqrt{c}}\)
Thu gọn biểu thức
a, A = \(\frac{2\sqrt{3-\sqrt{3+\sqrt{3+\sqrt{48}}}}}{\sqrt{6}-2}\)
b, B = \(\frac{\sqrt{a}+\sqrt{b}-1}{a+\sqrt{ab}}+\frac{\sqrt{a}-\sqrt{b}}{2\sqrt{ab}}\cdot\left(\frac{\sqrt{b}}{a-\sqrt{ab}}+\frac{\sqrt{b}}{a+\sqrt{ab}}\right)\)
\(\left(\frac{\sqrt{b}}{a-\sqrt{ab}}-\frac{\sqrt{a}}{\sqrt{ab-b}}\right).\left(a\sqrt{b}-b\sqrt{a}\right)\)
Rút gọn biểu thức sau
Giups mình nha
giả sử a;b;c;d;A;B;C;D là những số nguyên dương và \(\frac{a}{A}+\frac{b}{B}+\frac{c}{C}+\frac{d}{D}\). CMR:
\(\sqrt{aA}+\sqrt{bB}+\sqrt{cC}+\sqrt{dD}=\sqrt{\left(a+b+c+d\right)\left(A+B+C+D\right)}\)
GIÚP MK VỚI, MK CẦN GẤP LẮM!
Rút gọn
\(\frac{a-b}{\sqrt{a}+\sqrt{b}}-\frac{a+b-2\sqrt{ab}}{\sqrt{a}-\sqrt{b}}\)
\(\frac{1-\sqrt{a^3}}{a-1}\)
\(\left(a-b\right)\sqrt{\frac{ab}{\left(a-b\right)^2}}\)
Rut gon
\(\left(2-\frac{a-3\sqrt{a}}{\sqrt{a}-3}\right)\left(2-\frac{5\sqrt{a-\sqrt{ab}}}{\sqrt{b}-5}\right)\) voi a,b >0 a#3 ,b#25