Cho \(A=a\sqrt{a}+\sqrt{ab}\)và \(B=b\sqrt{b}+\sqrt{ab}\)với a > 0 , b > 0
CMR nếu \(\sqrt{a}+\sqrt{b}\)và \(\sqrt{ab}\)đều là các số hữu tỉ thì \(A+B\)và \(A.B\)cũng là các số hữu tỉ
Help me !!!!
cho a,b,c là các số hữu tỉ không âm và thỏa mãn \(\sqrt{a}+\sqrt{b}+\sqrt{c}\) là số hữu tỉ. Chứng minh \(\sqrt{a},\sqrt{b},\sqrt{c}\)là các số hữu tỉ
Nếu \(\frac{23\sqrt{2}}{\sqrt{2}+\sqrt{14+5\sqrt{3}}}=a+b\sqrt{3}\)với a;b là các số hữu tỉ thì ab=....
Cho a, b là số hữu tỉ, c, d là số hữu tỉ dương và c, d không là bình phương của số hữu tỉ nào. Chứng minh rằng nếu:
\(a+\sqrt{c}=b+\sqrt{d}\) thì \(\hept{\begin{cases}a=b\\c=d\end{cases}}\)
cho a,b,c là những số hữu tỉ khác 0 và a=b+c
chứng minh rằng : \(\sqrt{\dfrac{1}{a^2}+\dfrac{1}{b^2}+\dfrac{1}{c^2}}\) là một số hữu tỉ
Giả sử a, b là số hữu tỉ dương, ngoài ra b không là bình phương của số hữu tỉ nào. Chứng minh rằng tồn tại số hữu tỉ c, d sao cho:
\(\sqrt{a+\sqrt{b}}=\sqrt{c}+\sqrt{d}\) thì \(a^2-b\) là bình phương của một số hữu tỉ. Điều ngược lại có đúng không?
Cho `a, b, c` là các số hữu tỉ thỏa mãn `a sqrt 21 + b sqrt 5 + c sqrt 2023 =0`
Chứng minh rằng `a = b = c = 0`.
Cho a,b,c là những số hữu tỉ khác 0 và a=b+c
Chứng minh rằng \(\sqrt{\frac{1}{a^2}+\frac{1}{b^2}+\frac{1}{c^2}}\)là một số hữu tỉ
Cho a, b, c, d là các số hữu tỉ và a+b+c+d=0
Chứng minh rằng:
\(\sqrt{\left(ab-cd\right)\left(bc-da\right)\left(ca-bd\right)}\) là số hữu tỉ