Những câu hỏi liên quan
Nguyễn Thiều Công Thành
Xem chi tiết
Nguyễn Đạt
Xem chi tiết
Hoàng Minh Hoàng
31 tháng 7 2017 lúc 21:06

A(BT)=1/9((9/x+y+1) +(9/y+z+1)+9/(z+x+1)<=1/9(1/x+1/y+1+1/y+1/z+1+1/z+1/x+1)=1/9(2/x+2/y+2/z+3)

=1/9(2.(xy+yz+zx)/xyz)+3=2/9(xy+yz+zx)+1/3<=2/9.3+1/3=1(đpcm)

Bình luận (0)
Thắng Nguyễn
31 tháng 7 2017 lúc 21:20

Another way :|

Đặt \(\hept{\begin{cases}a=\sqrt[3]{x}\\b=\sqrt[3]{y}\\c=\sqrt[3]{z}\end{cases}}\Rightarrow\hept{\begin{cases}x=a^3\\y=b^3\\z=c^3\end{cases}}\)và \(xyz=1\Rightarrow\left(abc\right)^3=1\Rightarrow abc=1\)

Áp dụng BĐT AM-GM ta có:\(a^3+b^3+1=a^3+b^3+abc\)

\(=\left(a+b\right)\left(a^2-ab+b^2\right)+abc\)

\(\ge ab\left(a+b\right)+abc=ab\left(a+b+c\right)\)

\(\Rightarrow\frac{1}{a^3+b^3+1}\le\frac{1}{ab\left(a+b+c\right)}\). Tương tự cũng có:

\(\frac{1}{b^3+c^3+1}\le\frac{1}{bc\left(a+b+c\right)};\frac{1}{c^3+a^3+1}\le\frac{1}{ca\left(a+b+c\right)}\)

Cộng theo vế 3 BĐT trên ta có:

\(VT\le\frac{1}{ab\left(a+b+c\right)}+\frac{1}{bc\left(a+b+c\right)}+\frac{1}{ca\left(a+b+c\right)}\)

\(=\frac{c}{abc\left(a+b+c\right)}+\frac{a}{abc\left(a+b+c\right)}+\frac{b}{abc\left(a+b+c\right)}=\frac{a+b+c}{abc\left(a+b+c\right)}=1\)

Xảy ra khi \(a=b=c=1\Rightarrow x=y=z=1\)

Bình luận (0)
huynh van duong
Xem chi tiết
 Mashiro Shiina
Xem chi tiết
Lightning Farron
22 tháng 6 2018 lúc 21:40

djnh lam` nhung thay lop 8 nen thoi so mn ko hieu ;(

Bình luận (3)
 Mashiro Shiina
22 tháng 6 2018 lúc 11:45

x^2 nha :( help :(

Bình luận (0)
Hắc Hường
22 tháng 6 2018 lúc 15:21

Xem lại đề nhé!

Chứng minh đề sai:

Lấy ví dụ \(x=y=z=2\) thoả mãn yêu cầu đề bài là ba số thực dương

Khi đó, ta được:

\(x^2+y^y+z^z=2^2+2^2+2^2=12< 16=\left(2.2.2\right)\left(\dfrac{2+2+2}{3}\right)=\left(xyz\right)\left(\dfrac{x+y+z}{3}\right)\)

=> Trái với điều phải chứng minh.

Vậy ... (phương trình vô nghiệm chăng?)

Bình luận (2)
ctvhoc24h
Xem chi tiết
Nguyễn Việt Hoàng
8 tháng 11 2019 lúc 21:29

Từ giả thiết , ta có :

\(xyz=\left(1-x\right)\left(1-y\right)\left(1-z\right)\left(1\right)\)

\(\Rightarrow1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\)

Áp dụng bất đẳng thức sau : \(abc\le\left(\frac{a+b+c}{3}\right)^3\) ta có :

\(1=\left(\frac{1}{x}-1\right)\left(\frac{1}{y}-1\right)\left(\frac{1}{z}-1\right)\le\left(\frac{\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3}{3}\right)^3\)

\(\Rightarrow3\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}-3\)

\(\Rightarrow6\le\frac{1}{x}+\frac{1}{y}+\frac{1}{z}\)

\(\Rightarrow6xyz\le xy+yz+zx\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra:

\(3-3\left(x+y+z\right)+3\left(xy+yz+zx\right)=6xyz\le xy+yz+zx\)

\(\Rightarrow0\ge3-3\left(x+y+z\right)+2\left(xy+yz+zx\right)\)

Cộng 2 vế của bất đẳng thức trên cho \(\left(x^2+y^2+z^2\right)\)ta được:

\(x^2+y^2+z^2\ge\left(x+y+z\right)^2-3\left(x+y+z+3\right)=\left(x+y+z-\frac{3}{2}\right)^2+\frac{3}{4}\ge\frac{3}{4}\)

Dấu '' = '' xảy ra khi và chỉ khi \(x=y=z=\frac{1}{2}\) 

Bình luận (0)
 Khách vãng lai đã xóa
Nguyễn Đức Hiếu
10 tháng 11 2019 lúc 16:21

ta có:

xyz=(1-x).(1-y).(1-z)                                 (1)

=>1=(1:x-1).(1:y-1).(1:z-1)

Bình luận (0)
 Khách vãng lai đã xóa
Sad Story
Xem chi tiết
tthnew
17 tháng 1 2021 lúc 18:40

Lần sau bạn chú ý dùng chức năng Gõ công thức trực quan để người đọc dễ hiểu để bài nhé. Không hiểu không ai giúp bạn đâu.

Câu hỏi đã được hỏi nhiều lần, có thể xem tại: Cho x,y,z >0 t/m x y z=xyz. C/m \(\dfrac{1 \sqrt{1 x^2}}{x} \dfrac{1 \sqrt{1 y^2}}{y} \dfrac{1 \sqrt{1 z^2}}{z}\le xyz\) - Hoc24

Bình luận (0)
fairy
Xem chi tiết
alibaba nguyễn
15 tháng 6 2017 lúc 13:18

Tìm min hay tìm max thế? Max thì làm gì có.

Bình luận (0)
fairy
15 tháng 6 2017 lúc 14:20

nhưng đề bảo thế

Bình luận (0)
alibaba nguyễn
15 tháng 6 2017 lúc 14:33

x,y,z càng lớn thì x + y + z càng lớn mà làm gì có max

Bình luận (0)
Cris devil gamer
Xem chi tiết
Trần Tuấn Hoàng
Xem chi tiết
Người Vô Danh
28 tháng 2 2022 lúc 22:48

\(\left(x+y+z\right)^2=x^2+y^2+z^2+2xy+2xz+2yz=z^2+\left(x+y\right)^2+2z\left(x+y\right)=36\)

áp dụng BĐT cosi : 

\(z^2+\left(x+y\right)^2\ge2z\left(x+y\right)\)

<=> \(z^2+\left(x+y\right)^2+2z\left(x+y\right)\ge4z\left(x+y\right)=36< =>z\left(x+y\right)\ge9\)

ta lại có \(\dfrac{x+y}{xyz}=\dfrac{x}{xyz}+\dfrac{y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\) áp dụng BĐT buhihacopxki dạng phân thức => \(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{yz+xz}=\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\left(đpcm\right)\)

dấu bằng xảy ra khi \(\left[{}\begin{matrix}yz=xz< =>x=y\\x+y+z=6\\z^2=\left(x+y\right)^2\end{matrix}\right.< =>\left[{}\begin{matrix}x+y+z=6\\z=2x=2y\end{matrix}\right.< =>\left[{}\begin{matrix}x=y=\dfrac{3}{2}\\z=3\end{matrix}\right.\)

Bình luận (4)
Hồ Nhật Phi
28 tháng 2 2022 lúc 23:00

\(\dfrac{x+y}{xyz}=\dfrac{1}{yz}+\dfrac{1}{xz}\).

Áp dụng bất đẳng thức Cauchy-Schawrz dạng Engel:

\(\dfrac{1}{yz}+\dfrac{1}{xz}\ge\dfrac{4}{z\left(x+y\right)}\)     (1).

Áp dụng bất đẳng thức Cauchy cho hai số dương z và x+y, ta có:

\(z\left(x+y\right)\le\left(\dfrac{x+y+z}{2}\right)^2=9\). Suy ra, \(\dfrac{4}{z\left(x+y\right)}\ge\dfrac{4}{9}\)     (2).

Từ (1) và (2), suy ra \(\dfrac{x+y}{xyz}\ge\dfrac{4}{9}\) (đpcm).

Dấu "=" xảy ra khi và chỉ khi \(\dfrac{1}{yz}=\dfrac{1}{xz}\) và \(z=x+y\).

 

Bình luận (0)