a)12*x^2 -3xy +8xz - 2yz
b) x^3 + x^2*y -x^2*z - xyz
Phan tich cac đa thức thành nhân tử
a)12*x^2 -3xy +8xz - 2yz
b) x^3 + x^2*y -x^2*z - xyz
P= 3xy^2-6xy+8xz+xy^2-10xz tại x = -3 ; y=-1/2 ; z = 3
P=3xy^2+xy^2-6xy+8xz-10xz
=4xy^2-6xy-2xz
Khi x=-3 và y=-1/2 và z=3 thì P=4*(-3)*1/4-6*(-3)(-1/2)-2*(-3)*3
=-3+18/-2+6*3
=15-9
=6
Phân tích đa thức thành nhân tử:
a) (x-1)(x-2)(x-3)(x-4)+1
b) (x2+3x+2)(x2+7x+12)+1
c) 12x2-3xy-8xz+2yz
a) \(A=\left(x-1\right)\left(x-2\right)\left(x-3\right)\left(x-4\right)+1\)
\(A=\left[\left(x-1\right)\left(x-4\right)\right]\left[\left(x-2\right)\left(x-3\right)\right]+1\)
\(A=\left(x^2-5x+4\right)\left(x^2-5x+6\right)+1\)
Đặt \(a=x^2-5x+5\)
\(\Leftrightarrow A=\left(a-1\right)\left(a+1\right)+1\)
\(\Leftrightarrow A=a^2-1^2+1\)
\(\Leftrightarrow A=a^2\)
Thay \(a=x^2-5x+5\)vào A ta có :
\(A=\left(x^2-5x+5\right)^2\)
b) \(B=\left(x^2+3x+2\right)\left(x^2+7x+12\right)+1\)
\(B=\left(x^2+x+2x+2\right)\left(x^2+3x+4x+12\right)+1\)
\(B=\left[x\left(x+1\right)+2\left(x+1\right)\right]\left[x\left(x+3\right)+4\left(x+3\right)\right]+1\)
\(B=\left(x+1\right)\left(x+2\right)\left(x+3\right)\left(x+4\right)+1\)
Làm tương tự câu a)
c) \(12x^2-3xy-8xz+2yz\)
\(=3x\left(4x-y\right)-2z\left(4x-y\right)\)
\(=\left(4x-y\right)\left(3x-2z\right)\)
Sử dụng phương pháp nhóm các số hạng để phân tích các đa thức sau thành nhân tử:
a) 27m( m + n) - m - n
b) 15x( x - y) - 25x + 25y
c) 12x2 - 3xy + 8xz - 2yz
d) x3 + x2y - x2z - xyz
a) Ta có: \(27m\left(m+n\right)-m-n\)
\(=27m\left(m+n\right)-\left(m+n\right)\)
\(=\left(m+n\right)\left(27m-1\right)\)
b) Ta có: \(15x\left(x-y\right)-25x+25y\)
\(=15x\left(x-y\right)-25\left(x-y\right)\)
\(=5\left(x-y\right)\left(3x-5\right)\)
c) Ta có: \(12x^2-3xy+8xz-2yz\)
\(=3x\left(4x-y\right)+2z\left(4x-y\right)\)
\(=\left(4x-y\right)\left(3x+2z\right)\)
d) Ta có: \(x^3+x^2y-x^2z-xyz\)
\(=x^2\left(x+y\right)-xz\left(x+y\right)\)
\(=x\left(x+y\right)\left(x-z\right)\)
Help me a)4X=5Y=32 va 4y=32 ,x-y+z=36 ; b)x-1/2=y-2=3-z/3 và x+y+z=12 c) x/9=y/2=z/-2 và xyz=4
Giải các hệ phương trình sau:
a) \(\hept{\begin{cases}x^3+y^3+x^2\left(y+z\right)=xyz+14\\y^3+z^3+y^2\left(x+z\right)=xyz-21\\z^3+x^3+z^2\left(x+y\right)=xyz+7\end{cases}}\)
b)\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}}\)
Bài b nhé bạn!
\(\hept{\begin{cases}\frac{xyz}{x+y}=2\\\frac{xyz}{y+z}=\frac{6}{5}\\\frac{xyz}{x+z}=\frac{3}{2}\end{cases}\Leftrightarrow\hept{\begin{cases}\frac{x+y}{xyz}=\frac{1}{2}\\\frac{y+z}{xyz}=\frac{5}{6}\\\frac{x+z}{xyz}=\frac{2}{3}\end{cases}}}\)\(\Leftrightarrow\hept{\begin{cases}\frac{1}{yz}+\frac{1}{xz}=\frac{1}{2}\\\frac{1}{xz}+\frac{1}{xy}=\frac{5}{6}\\\frac{1}{xy}+\frac{1}{yz}=\frac{2}{3}\end{cases}}\Rightarrow\frac{1}{xy}+\frac{1}{yz}+\frac{1}{xz}=\frac{\frac{1}{2}+\frac{5}{6}+\frac{2}{3}}{2}=1\)
Trừ lại từng phương trình trong hệ:
\(\hept{\begin{cases}\frac{1}{xy}=\frac{1}{2}\\\frac{1}{yz}=\frac{1}{6}\\\frac{1}{xz}=\frac{1}{3}\end{cases}}\Leftrightarrow\hept{\begin{cases}xy=2\\yz=6\\xz=3\end{cases}\Rightarrow xyz=\sqrt{2.6.3}=6}\)
Chia lại từng phương trình trong hệ mới, được:
\(\hept{\begin{cases}z=3\\x=1\\y=2\end{cases}}\)
Vậy \(\left(x;y;z\right)=\left(1;2;3\right)\)
Xong rồi đó!!!
1, 2x2 - 8xy - 5x + 20y
2, x3 - x2y - xy + y2
3, x2 - 2xy - 4z2 + y2
4, a3 + a2b - a2c - abc
5, x3 + y3 + 3x2y + 3xy2 - x - y
6, x3 + x2y - x2z - xyz
7, x(y+z)2 + y(z+x)2 + z(x+y)2 - 4xyz
8, x3(z-y) + y3(x-z) + z3(y-x)
1) 2x2-8xy-5x+20y
=2x(x-4y)-5(x-4y)
=(2x-5)(x-4y)
2) x3-x2y-xy+y2
=x2(x-y)-y(x-y)
=(x2-y)(x-y)
3) x2-2xy-4z2+y2
=(x-y)2-(2z)2
=(x-y-2z)(x-y+2z)
4) a3+a2b-a2c-abc
=a2(a+b)-ac(a+b)
=(a2-ac)(a+b)
=a(a-c)(a+b)
5) x3+y3+3x2y+3xy2-x-y
=(x+y)(x2-xy+y2)+3xy(x+y)-(x+y)
=(x+y)(x2-xy+y2+3xy-1)
=(x+y)[(x+y)2-1)]
=(x+y)(x+y+1)(x+y-1)
6) x3+x2y-x2z-xyz
=x2(x+y)-xz(x+y)
=(x2-xz)(x+y)
=x(x-z)(x+y)
7) =[x(y+z)2-2xyz]+[y(z+x)2-2xyz]+z(x+y)2
=x(y2+z2)+y(z2+x2)+z(x+y)2
=xy(x+y)+z2(x+y)+z(x+y)2
=(x+y)(xy+z2+zx+zy)
=(x+y)(x+z)(y+z)
8) x3(z-y)+y3(x-z)+z3(y-x)
Tách x-z= -[z-y+y-x]
tìm x,y,z biết 4/x+1 = 2/y-2 = 3/z+2 và xyz=12
tìm x,y,z biết 4/x+1 = 2/y-2 = 3/z+2 và xyz=12