Cho tam giác ABC có góc A tù. Trên cạnh AB lấy điểm E, trên cạnh AC lấy điểm F. Chọn câu đúng
Cho tam giác ABC có góc A là góc tù. Trên cạnh AB lấy điểm D. Trên cạnh AC lấy điểm E. Chứng mih DE < BC.
Nối C vs D
Xét tam giác ADEcó góc DEC là góc ngoài tại E
=> góc DEC=BAC+EDA
mà BAC> 90' (gt)
=>DEC>90 => DEC là góc tù
Xét tam giác DEC có DEC là góc tù
=>DC là cạnh lớn nhất trong tam giác ( đối diện vs góc tù)
=>DC>DE(1)
Từ (1),(2) ,=>DE<DC<BC
=>DE,BC (đpcm)
Cho tam giác ABC có góc A tù. Trên cạnh AB lấy điểm D (khác A và B), trên cạnh AC lấy điểm E (khác A và C). Chứng minh rằng DE < BC.
+ ΔADE có ∠E1 là góc ngoài ⇒ ∠E1 > ∠A
Mà ∠A > 90o ⇒ ∠E1 > 90o
ΔCDE có ∠E1 tù ⇒ CD là cạnh lớn nhất ⇒ CD > DE (1)
+ Tương tự xét ΔADC có ∠D1 là góc ngoài
⇒ ∠D1 > ∠A ⇒ ∠D1 > 90o (vì ∠A > 90º)
ΔBDC có ∠D1 tù ⇒ BC là cạnh lớn nhất ⇒ BC > CD (2)
Từ (1) và (2) suy ra BC > DE.
Cho tam giác ABC có góc A là góc tù. Trên cạnh AB lấy điểm D (khác A và B), trên cạnh AC lấy điểm E (khác A và C). CMR DE<BC
+ ΔADE có ∠E1 là góc ngoài ⇒ ∠E1 > ∠A
Mà ∠A > 90o ⇒ ∠E1 > 90o
ΔCDE có ∠E1 tù ⇒ CD là cạnh lớn nhất ⇒ CD > DE (1)
+ Tương tự xét ΔADC có ∠D1 là góc ngoài
⇒ ∠D1 > ∠A ⇒ ∠D1 > 90o (vì ∠A > 90º)
ΔBDC có ∠D1 tù ⇒ BC là cạnh lớn nhất ⇒ BC > CD (2)
Từ (1) và (2) suy ra BC > DE.
Cho tam giác ABC có góc BAC tù. Trên BC lấy hai điểm D và E trên cạnh AB lấy điểm F, trên AC lấy điểm K sao cho BD=BA,CE=CA,BE=BF,CK=CD.Chứng minh 4 điểm D,E,F,K cùng thuộc 1 đường tròn
Cho tam giác ABC có góc A tù. Trên cạnh AB lấy điểm D (khác A và B ), trên cạnh AC lấy điểm E( khác A và C).Chứng minh rằng DE<BC
Cho tam giác ABC có góc A tù. Trên cạnh AB lấy điểm D (khác A và B), trên cạnh AC lấy điểm E (khác A và C).
Chứng minh rằng DE < BC ?
Xét \(\Delta CDE\) có \(\widehat{E_1}>\widehat{A}\), mà \(\widehat{A}\) là góc tù nên \(\widehat{E_1}\) là góc tù.
Suy ra CD > DE. (1)
Xét \(\Delta BCD\) có \(\widehat{D_1}>\widehat{A}\) nên \(\widehat{D_1}\) là góc tù. Suy ra BC > CD. (2)
Từ (1) và (2) suy ra BC > DE.
cho tam giác ABC cân tại A ,A là góc tù . trên cạnh BC lấy điểm D , trên tia BC lấy điểm E sao cho BD=CE . trên tia Ac lấy điểm I sao cho CI = CA . tam giác ABD = tam giác ICE . CMR AB+AC < AD+AE
Cho tam giác ABC cân (AB=AC; góc A tù). Trên cạnh BC lấy điểm D, trên tia đối của CB lấy điểm E sao cho BD = CE. Trên tia đối của CA lấy điểm I sao cho CI = CA.
Câu 1: Chứng minh rằng chu vi tam giác ABC nhỏ hơn chu vi tam giác AMN.
Cho tam giác ABC có AB < AC. Tia phân giác góc A cắt cạnh BC tại D. Lấy điểm E trên cạnh AC sao cho AE = AB. Trên tia đối của tia BA lấy điểm F sao cho BF = EC. Chứng minh rằng :
a) DB = DE
b) tam giác BDF= tam giác EDC
c) E, D, F thẳng hàng
a: Xét ΔABD và ΔAED có
AB=AE
góc BAD=góc EAD
AD chung
Do đó: ΔABD=ΔAED
=>DB=DE
b: Xét ΔDBF và ΔDEC có
góc DBF=góc DEC
DB=DE
góc BDF=góc EDC
Do đo: ΔDBF=ΔDEC
c:ΔDBF=ΔDEC
nên góc BDF=góc EDC
=>góc BDF+góc BDE=180 độ
=>E,D,F thẳng hàng