Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Tran An Ngan
Xem chi tiết
Quận Hoàng Đăng
10 tháng 9 2016 lúc 22:21

co gi pm nha buon ngu qua

☆MĭηɦღAηɦ❄
3 tháng 8 2020 lúc 17:42

\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)

Ta thấy  \(x^2+1\ge1>0\forall x\)

\(\Rightarrow\left(x^2+1\right)^2\ge\left(x^2+1\right)\forall x\ge0\)

\(\Leftrightarrow\left(x^2+1\right)^2-\left(x^2+1\right)\ge0\)

\(\Rightarrow A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+20\left(x^2+1\right)^2+\left(x^2+1\right)^2-\left(x^2+1\right)-30\)

\(\ge1^4+9.1^4+20.1^2+0-30=0\)

\(\Rightarrow Min.A=0\Leftrightarrow x^2+1=1\Leftrightarrow x=0\)

Vậy A luôn không âm với mọi giá trị của biến.

Khách vãng lai đã xóa
phan gia huy
Xem chi tiết
Phúc
10 tháng 2 2018 lúc 16:55

Đặt x2+1=a(a\(\ge1\))

=> A= a4+9a3+21a2-a-30

        =(a-1)(a3+10a2+31a+30)

Do a\(\ge1\)=>\(\hept{\begin{cases}a-1\ge0\\a^3+10a^2+31a+30>0\end{cases}}\)

=> A\(\ge0\)(ĐPCM)

Nguyễn Thu Huyền
Xem chi tiết
Nguyễn Lê Phước Thịnh
7 tháng 9 2022 lúc 8:55

\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-1-30\)

\(=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-\left(x^2+1\right)-30\)

\(=\left(x^2+1-1\right)\left(x^2+1+2\right)\left(x^2+1+3\right)\left(x^2+1+5\right)\)

\(=x^2\cdot\left(x^2+3\right)\left(x^2+4\right)\left(x^2+6\right)>=0\forall x\)

Bolbbalgan4
Xem chi tiết
super xity
Xem chi tiết
123456
15 tháng 11 2015 lúc 22:52

tick cho mình rồi mình giải cho

123456
15 tháng 11 2015 lúc 22:52

tick cho mình rồi mình giải cho

Châu Anh Phạm
Xem chi tiết
luu thanh huyen
Xem chi tiết
Phạm Thị Huyền
Xem chi tiết
Nguyễn Văn Đức
Xem chi tiết