Ta có
A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30
Trong đó với mọi x:
x^2+1>=1,
(x^2+1)^3>=1,
21(x^2+1)^2>=21,
9(x^2+1)>=9
Nên
(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]>=30
Tương đương
A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30>=0 (đpcm)
Ta có
A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30
Trong đó với mọi x:
x^2+1>=1,
(x^2+1)^3>=1,
21(x^2+1)^2>=21,
9(x^2+1)>=9
Nên
(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]>=30
Tương đương
A=(x^2+1).[(x^2+1)^3+21(x^2+1)^2+9(x^2+1)-1]-30>=0 (đpcm)
Cho A= (x^2+1)^4+ 9(x^2+1)^3+ 21(x^2+1)^2- x^2-31. Chứng minh rằng A luôn luôn không âm với mọi giá trị của biến.
Chứng minh rằng :
\(A=\left(x^2+1\right)^4+9\left(x^2+1\right)^3+21\left(x^2+1\right)^2-x^2-31\)
Luôn luôn không âm với mọi giá trị của x
C minh
(x^2 + 1)^4 + 9(x^2 + 1)^3 + 21(x^2 + 1)^2 - x^2 - 31 luôn không âm
chứng minh rằng A= (x2+1)2+9(x2+1)2+21(x2+1)2-x2-31 luông không âm với mọi x
Cho biểu thức A= ( x2 +1 )4 +9( x2 +1 )3 + 21( x2 +1 )2 - x2 -31. CMR : A luôn không âm với mọi x
1/ Chứng minh đa thức sau luôn dương với mọi x:
x2 - x + 1
2/ Chứng minh các đa thức sau luôn âm với mọi x:
a) (x - 3)(1 - x) - 2
b) (x + 4)(2 - x) - 10
Chứng tỏ đa thức A=\(\frac{2}{x^4-1}+\frac{1}{1-x^2}\) luôn có giá trị âm với mọi x khác -1;1
Cho A=1/x-2 +1/x+2 + x^2+1/x^2-4 (x#2,-2)
a, Rút gọn A
b,Chứng tỏ rằng với mọi x thỏa mãn -2<x<2 (x#-1) phân thức luôn có giá trị âm
Chứng minh rằng đa thức \(\dfrac{x^2+x+1}{-2x^2+2x-2}\) luôn nhận giá trị âm với mọi x