M= 3xyz - 3x2 + 5xy -1
N= 5x2 + xyz - 5xy + 3 - y.
Tính: M-N ; N-M.
Cho hai đa thức :
M=3xyz-3x2-5xy-1
N=5x2+xyz-5xy+3-y .
Tính M+N ;M-N ; N-M
\(M+N=2x^2+4xyz-10xy+2-y\)
\(M-N=-8x^2+2xyz-4+y\)
\(N-M=8x^2-2xyz+4-y\)
M+N=2x2+4xyz−10xy+2−y
M−N=−8x2+2xyz−4+y
N−M=8x2−2xyz+4−y
M+N=2x2+4xyz−10xy+2−y
M−N=−8x2+2xyz−4+y
N−M=8x2−2xyz+4−y
Cho hai đa thức:
M = 3xyz – 3x2 + 5xy – 1
N = 5x2 + xyz – 5xy + 3 – y.
Tính M + N; M – N; N – M.
M + N = (3xyz – 3x2 + 5xy – 1) + (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 + 5x2 + xyz – 5xy + 3 – y
= (3xyz + xyz)+( –3x2 + 5x2) + (5xy – 5xy) – y + ( – 1+3)
= 4xyz + 2x2 – y + 2
M – N = (3xyz – 3x2 + 5xy – 1) – (5x2 + xyz – 5xy + 3 – y)
= 3xyz – 3x2 + 5xy – 1 – 5x2 – xyz + 5xy – 3 + y
= (– 3x2 – 5x2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)
= –8x2 + 2xyz + 10xy + y – 4.
N – M = (5x2 + xyz – 5xy + 3 – y) – (3xyz – 3x2 + 5xy – 1)
= 5x2 + xyz – 5xy + 3 – y – 3xyz + 3x2 – 5xy +1
= (5x2 + 3x2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y
= 8x2 – 2xyz – 10xy – y + 4.
Chú ý: Vì M – N và N – M là hai đa thức đối nhau nên
N – M = 8x2 – 2xyz – 10xy – y + 4
(Ta chỉ cần đổi dấu mỗi hạng tử của đa thức M – N là thu được N – M).
Cho hai đa thức:
M = 3xyz – 3x2 + 5xy – 1
N = 5x2 + xyz – 5xy + 3 – y.
Tính M + N; M – N; N – M.
nhận xét về hiệu M-N và N-M
\(M+N=3xyz-3x^2+5xy-1+5x^2+xyz-5xy+3-y\)
\(=4xyz+2x^2-2-y\)
\(M-N=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3+y\)
\(=2xyz-8x^2+10xy-4+y\)
\(N-M=5x^2+xyz-5xy+3-y-3xyz+3x^2-5xy+1\)
\(=-2xyz+8x^2-10xy+4-y\)
Nhận xét: Hiệu M - N có kết quả đối với kết quảh hiệu N - M
M+N=3xyz-3x^2+5xy-1+5x2+xyz-5xy+3-y
=3xyz+xyz-3x^2+5x^2+5xy-5xy-y-1+3
=4xyz+2x^2-y+2
M-N= 3xyz-3x^2+5xy-1-(5x^2+xyz-5xy+3-y)
=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3+y
=3xyz-xyz-3x^2-5x^2+5xyz+5xyz+y-1-3
=2xyz-8x^2+10xyz+y-4
⇒N-M=-(2xyz-8x^2+10xyz+y-4)
=-2xy+8x^2-10xyz-y+4
Bạn tự nhận xét nha
thì mik chỉ làm cộng trừ đa thức thôi. Tik cho mik nha
M=3xyz-3x³+5xy-1 n=5x²+xyz-5xy+3-y
Tính M+N, M-N
\(M + N = (3xyz – 3x^2 + 5xy – 1) + (5x^2 + xyz – 5xy + 3 – y)\)
\(= 3xyz – 3x^2 + 5xy – 1 + 5x^2 + xyz – 5xy + 3 – y\)
\(= (3xyz + xyz)+( –3x^2 + 5x^2) + (5xy – 5xy) – y + ( – 1+3)\)
\(= 4xyz + 2x^2 – y + 2\)
\(M – N = (3xyz – 3x^2 + 5xy – 1) – (5x^2 + xyz – 5xy + 3 – y)\)
\(= 3xyz – 3x^2 + 5xy – 1 – 5x^2 – xyz + 5xy – 3 + y\)
\(= (– 3x^2 – 5x^2) + (3xyz – xyz) + (5xy + 5xy) + y +(– 1 – 3)\)
\(= –8x^2 + 2xyz + 10xy + y – 4.\)
\(N – M = (5x^2 + xyz – 5xy + 3 – y) – (3xyz – 3x^2 + 5xy – 1)\)
\(= 5x^2 + xyz – 5xy + 3 – y – 3xyz + 3x^2 – 5xy +1\)
\(= (5x^2 + 3x^2)+ (xyz – 3xyz)+( – 5xy – 5xy) + (3 + 1 )– y\)
\(= 8x^2 – 2xyz – 10xy – y + 4.\)
M+N=(3xyz-3x3+5xy-1)+(5x2+xyz-5xy+3-y)
=3xyz-3x3+5xy-1+5x2+xyz-5xy+3-y
=(3xyz+xyz)+(-3x3)+(5xy-5xy)+(-1+3)+5x2-y
= 4xyz+(-3x3)+2+5x2-y
M-N=(3xyz-3x3+5xy-1)-(5x2+xyz-5xy+3-y)
=3xyz-3x3+5xy-1-5x2-xyz+5xy-3+y
=(3xyz-xyz)+(-3x3)+(5xy+5xy)+(-1-3)-5x2+y
= 2xyz+(-3x3)+10xy+(-4)-5x2+y
BÀI 2: Cho hai đa thức : M = 3xyz - 3x^2 +5xy-1 và N = 5x^2+xyz-5xy+3. Tính M+N;M-N
M+N
\(=3xyz-3x^2+5xy-1+5x^2+xyz-5xy+3\)
\(=2x^2+4xyz+2\)
M-N
\(=3xyz-3x^2+5xy-1-5x^2-xyz+5xy-3\)
\(=-8x^2+2xyz+10xy-4\)
M+N= (3xyz-3x+5xy-1)+(5x+xyz-5xy+3-y)
=? có làm dc ko
Quá dễ
Cho hai đa thức:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y.
Tính M + N; M - N; N - M.
Ta có:
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy + 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= -3x2 + 5x2 + 3xyz + xyz + 5xy - 5xy - y - 1 + 3
= 2x2 + 4xyz - y +2.
M - N = (3xyz - 3x2 + 5xy - 1) - (5x2 + xyz - 5xy + 3 - y)
= 3xyz - 3x2 + 5xy - 1 - 5x2 - xyz + 5xy - 3 + y
= -3x2 - 5x2 + 3xyz - xyz + 5xy + 5xy + y - 1 - 3
= -8x2 + 2xyz + 10xy + y - 4.
N - M = (5x2 + xyz - 5xy + 3 - y) - (3xyz - 3x2 + 5xy - 1)
= 5x2 + xyz - 5xy + 3 - y - 3xyz + 3x2 - 5xy + 1
= 5x2 + 3x2 + xyz - 3xyz - 5xy - 5xy - y + 3 + 1
= 8x2 - 2xyz - 10xy - y + 4.
M = 3xyz - 3x2 + 5xy - 1
N = 5x2 + xyz - 5xy - 3 - y
M + N = 3xyz - 3x2 + 5xy - 1 + 5x2 + xyz - 5xy + 3 - y
= ( 3xyz + xyz ) + ( -3x2 + 5x2 ) + ( 5xy - 5xy ) + ( -1 + 3 ) - y
= 4xyz + 2x2 + 2 - y
Cho M = 3xyz - 3x2 +5xy - 1 và N = 5x2 + xyz - 5xy + 3 - y
Tính:
a) M + N
b) M - N
c) N - M
Bài 1: Làm tính nhân:
a. 3x2(5x2- 4x +3) b. – 5xy(3x2y – 5xy +y2)
c. (5x2- 4x)(x -3) d. (x – 3y)(3x2 + y2 +5xy)
a, \(15^4-12x^3+9x^2\)
b,\(-15x^3y^2+25x^2y^2-5xy^3\)
c, \(5x^3-19x^2+12x\)
d,
x3+xy2+5x2y−9x2y−3y3−15xy2=3x3−3y3−14xy2−4x2y
\(a,=15x^4-12x^3+9x^2\\ b,=-15x^3y^2+25x^2y^2-5xy^3\\ c,=5x^3-15x^2-4x^2+12x=5x^3-19x^2+12x\\ d,=3x^3+xy^2+5x^2y-9x^2y-3y^3-15xy^2=3x^3-14xy^2-4x^2y-3y^3\)