Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Tấn Phát
Xem chi tiết
tth_new
14 tháng 3 2019 lúc 16:58

Do n nguyên và n > 1 nên \(n\ge2\)

Với n = 2 \(n^3-13n=-18⋮6\)

Giả sử đúng với n = k (k>1) tức là \(k^3-13k⋮6\)

Ta chứng minh điều có đúng với n = k + 1

Thật vậy: \(\left(k+1\right)^3-13\left(k+1\right)=k^3+3k^2+3k+1-13k-13\)

\(=\left(k^3-13k\right)+\left(3k^2+3k-12\right)\)

Ta chỉ cần chứng minh: \(3k^2+3k-12⋮6\)

\(\Leftrightarrow3\left(k^2+k\right)⋮6\Leftrightarrow k^2+k⋮2\)

Tới đây xét tính chẵn lẻ nữa là xong=)

Nhân Thành
14 tháng 3 2019 lúc 19:24

n3 -13n = n- n - 12n = n(n2-1) - 12n = (n-1)n(n+1) - 12n

Ta có: (n-1)n(n+1) là 3 số nguyên liên tiếp nên chia hết cho 6 và 12n chia hết cho 6 => n3 -13n \(⋮\)6

Nguyễn Khôi  Nguyên
20 tháng 4 2021 lúc 16:13

WTF DŨNG YOU LITTLE PIECE OF SHIT WHAT WRONG WITH YOU

Khách vãng lai đã xóa
Lê Thị Yến Ninh
Xem chi tiết
đỗ Hoàng Gia HUy
19 tháng 7 2016 lúc 10:31

A =  n3-n - 12n= n(n2-1)-12n=n(n-1)(n+1)-12n

ta có 12n chia hết 6

n(n-1)(n+1) là tích 3 số nguyên liên tiếp chia hết cho 6. Vậy a chia hết cho 6

nhớ k cho mik nhá 

kẻ giấu tên
Xem chi tiết
Nguyễn Lê Phước Thịnh
26 tháng 10 2022 lúc 23:08

\(A=\left(n-2\right)\left(n-3\right)\left(n+1\right)\left(2n+1\right)\)

Vì n-2;n-3 là hai số liên tiếp

nên (n-2)(n-3) chia hết cho 2

=>A chia hết cho 2

TH1: n=3k

=>n-3=3k-3 chia hết cho 3

TH2: n=3k+1

=>2n+1=6k+2+1=6k+3 chia hết cho 3

TH3: n=3k+2

=>n+1=3k+3 chia hết cho 3

=>A chia hết cho 6

Vongola Tsuna
Xem chi tiết
anh_hung_lang_la
30 tháng 4 2016 lúc 9:01

Đặt B = n3 - 13n = n3 - n -12n = n(n - 1)(n + 1) - 12n 

Ta có : Trong 3 số nguyên liên tiếp tồn tại ít nhất 1 số chẵn và tồn tại ít nhất một số chia hết cho 3 nên tích của 3 số đó chia hết cho 2 và

chia hết cho 3 mà (2;3) = 1 nên tích 3 số nguyên liên tiếp chia hết cho 6 

=> n(n - 1)(n + 1) chia hết cho 6 mà 12n chia hết cho 6 

=> n3 - n chia hết cho 6 

Namikaze Minato
30 tháng 4 2016 lúc 9:00

jh,i,uil

Nguyễn Phương Anh
Xem chi tiết
Nhok Silver Bullet
Xem chi tiết
Vũ Lê Nhật Minh
3 tháng 8 2015 lúc 21:30

n^3-n=n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại 1 bội của 3 =>n(n-1)(n+1) chia hết cho 3

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;3)=1=>n(n-1)(n+1)chia hết cho 6

hay n^3-n chia hết cho 6

n^5-n=n(n-1)(n+1)(n^2+1)

=n(n-1)(n+1)(n^2-4+5)

=n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)

n(n-1)(n+1)(n-2)(n+2) là tích 5 số nguyên liên tiếp

=>tồn tại 1 bội của 5 =>n(n-1)(n+1) chia hết cho 5

=>tồn tại ít nhất2 bội của 2 =>n(n-1)(n+1) chia hết cho 2

mà (2;5)=1=>n(n-1)(n+1)(n-2)(n+2) chia hết cho 10

n(n-1)(n+1) là tích 3 số nguyên liên tiếp

=>tồn tại ít nhất 1 bội của 2 =>n(n-1)(n+1) chia hết cho 2

=>5n(n-1)(n+1) chia hết cho 10

=>n(n-1)(n+1)(n-2)(n+2)+5(n-1)n(n+1)chia hết cho 10

hay n^5-n chia hết cho 10

tran minh phuc
Xem chi tiết
nguyễn phương thảo
Xem chi tiết
OoO Pipy OoO
8 tháng 8 2016 lúc 17:32

\(n^4-1=\left(n^2\right)^2-1^2=\left(n^2-1\right)\left(n^2+1\right)=\left(n-1\right)\left(n+1\right)\left(n^2+1\right)\)

n lẻ  

=> n - 1 và n + 1 chẵn

Tích của 2 số chẵn liên tiếp sẽ chia hết cho 8

=> Biểu thức trên chia hết cho 8 với mọi n lẻ (đpcm)

nguyễn phương thảo
8 tháng 8 2016 lúc 22:20

ai giải giúp mình bài 2 và bài 3 với

Nguyen Thanh Tung
Xem chi tiết
Nguyễn Ngọc Quý
16 tháng 7 2015 lúc 8:38

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho

assasinsatthu
29 tháng 7 2017 lúc 22:05

Ta có: số chẵn chia hết cho 2

Nếu n là số lẻ thì (n+3)(n+6) = (chẵn)(lẻ) nên chia hết cho 2

Nếu n là số chẵn thì (n+3)(n+6)=(lẻ)(chẳn) nên chia hết cho 2

Vậy với mọi n thuộc N thì tích đều chia hết cho