5 + ..... = 95
4+3/5+3/7+...+3/95+3/97+3/99
1/99+1/3*97+1/5*95+..+1/95*5+1/97*3+1/99*1
9*5*95*95=..........
= 45*95*95
= 4275*95
= 406125
**** mình nha
tính A= (1+1/3+1/5+...+1/95+1/97+1/99) /(1/1*99+1/3*97+1/5*95+...+1/95*5+1/97*3+1/99*1)
Chứng minh
a)30(-12)+2020<30(-10)+2020
b)(-45)5+95<(-45)(-5)+95
a) Ta có: -12<-10
\(\Leftrightarrow30\cdot\left(-12\right)< 30\cdot\left(-10\right)\)
\(\Leftrightarrow30\cdot\left(-12\right)+2020< 30\cdot\left(-10\right)+2020\)(đpcm)
b) Ta có: 5>-5
\(\Leftrightarrow\left(-45\right)\cdot5< \left(-45\right)\cdot\left(-5\right)\)
\(\Leftrightarrow\left(-45\right)\cdot5+95< \left(-45\right)\cdot\left(-5\right)+95\)(đpcm)
1/2×5+1/5×8+1/8×11+...+1/92×95+1/95×98
=1/3(3/2*5+3/5*8+...+3/95*98)
=1/3(1/2-1/5+1/5-1/8+...+1/95-1/98)
=1/3*96/196
=32/196
=8/49
\(\dfrac{95}{x}\)+\(\dfrac{95}{x+1}\)=5
Ta có: \(\dfrac{95}{x}+\dfrac{95}{x+1}=5\)
\(\Leftrightarrow5x\left(x+1\right)=95x+95+95x\)
\(\Leftrightarrow5x^2+5x-190x-95=0\)
\(\Leftrightarrow5x^2-185x-95=0\)
\(\Leftrightarrow x^2-37x-19=0\)
\(\Delta=\left(-37\right)^2-4\cdot1\cdot\left(-19\right)=1445\)
Phương trình có hai nghiệm phân biệt là:
\(\left\{{}\begin{matrix}x_1=\dfrac{37-17\sqrt{5}}{2}\\x_2=\dfrac{37+17\sqrt{5}}{2}\end{matrix}\right.\)
\(\dfrac{95}{x}+\dfrac{95}{x+1}=5\)
<=> \(\dfrac{95\left(x+1\right)}{x\left(x+1\right)}+\dfrac{95x}{x\left(x+1\right)}=\dfrac{5x\left(x+1\right)}{x\left(x+1\right)}\)
=> 95x + 95 + 95x = 5x2 + 5x
<=> 190x - 5x - 5x2 = -95
<=> -5x2 + 185x + 95 = 0
<=> x = 37,5
A=1/2*5 + 1/5*8 + 1/8*11 + ... + 1/92*95 + 1/95*98
Ta có:\(A=\dfrac{1}{2}-\dfrac{2}{5}+\dfrac{2}{5}-\dfrac{3}{8}+\dfrac{3}{8}-\dfrac{4}{11}+...+\dfrac{31}{92}-\dfrac{32}{95}+\dfrac{32}{95}-\dfrac{33}{98}\)
\(=\dfrac{1}{2}+\dfrac{33}{98}=\dfrac{82}{98}=\dfrac{41}{49}\)
Ta có: \(A=\dfrac{1}{2\cdot5}+\dfrac{1}{5\cdot8}+\dfrac{1}{8\cdot11}+...+\dfrac{1}{92\cdot95}+\dfrac{1}{95\cdot98}\)
\(=\dfrac{1}{3}\left(\dfrac{3}{2\cdot5}+\dfrac{3}{5\cdot8}+\dfrac{3}{8\cdot11}+...+\dfrac{3}{92\cdot95}+\dfrac{3}{95\cdot98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{8}+\dfrac{1}{8}-\dfrac{1}{11}+...+\dfrac{1}{92}-\dfrac{1}{95}+\dfrac{1}{95}-\dfrac{1}{98}\right)\)
\(=\dfrac{1}{3}\left(\dfrac{1}{2}-\dfrac{1}{98}\right)\)
\(=\dfrac{8}{49}\)
(x-1/99+x-99)+(x-3/97+x-7/93)+(x-5/95+x-95/5)=6
Giải pt : ( x-1/99 +x-99 )+( x-3/97 + x-97/3 )+ (x-5/95 + x-95/5 )=6
\(\Leftrightarrow\left(\dfrac{x-1}{99}-1\right)+\left(\dfrac{x-99}{1}-1\right)+\left(\dfrac{x-3}{97}-1\right)+\left(\dfrac{x-97}{3}-1\right)+\left(\dfrac{x-5}{95}-1\right)+\left(\dfrac{x-95}{5}-1\right)=0\)
=>x-100=0
=>x=100
Tính A:
A=2/2×5+2/5×8+2/8×11+...+2/92×95+2/95×98
\(A=\frac{2}{2\cdot5}+\frac{2}{5\cdot8}+\frac{2}{8\cdot11}+...+\frac{2}{92\cdot95}+\frac{2}{95\cdot98}\)
\(A=\frac{2}{3}\left[\frac{3}{2\cdot5}+\frac{3}{5\cdot8}+\frac{3}{8\cdot11}+...+\frac{3}{92\cdot95}+\frac{3}{95\cdot98}\right]\)
\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{95}-\frac{1}{98}\right]\)
\(A=\frac{2}{3}\left[\frac{1}{2}-\frac{1}{98}\right]=\frac{2}{3}\left[\frac{49}{98}-\frac{1}{98}\right]=\frac{2}{3}\cdot\frac{48}{98}=\frac{2}{3}\cdot\frac{24}{49}=\frac{2}{1}\cdot\frac{8}{49}=\frac{16}{49}\)
\(A=\frac{2}{2.5}+\frac{2}{5.8}+...+\frac{2}{92.95}+\frac{2}{95.98}\)
\(=\frac{2}{3}\left(\frac{3}{2.5}+\frac{3}{5.8}+...+\frac{3}{92.95}+\frac{3}{95.98}\right)\)
\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{5}+\frac{1}{5}-\frac{1}{8}+...+\frac{1}{92}-\frac{1}{95}+\frac{1}{95}-\frac{1}{98}\right)\)
\(=\frac{2}{3}\left(\frac{1}{2}-\frac{1}{98}\right)\)
\(=\frac{2}{3}.\frac{24}{49}\)
\(=\frac{16}{49}\)
#)Giải :
\(A=2-\frac{2}{5}+\frac{2}{5}-\frac{2}{8}+\frac{2}{8}-\frac{2}{11}+...+\frac{2}{95}-\frac{2}{98}\)
\(A=2-\frac{2}{98}\)
\(A=1\frac{48}{49}=\frac{97}{49}\)
#~Will~be~Pens~#