Chứng minh rằng
29-1 chia hết cho 73
56-104 chia hết cho 9
Chứng minh:
a) 2 9 -1 chia hết cho 73; b) 5 6 - 10 4 chia hết cho 9.
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
a) Chứng minh rằng: nếu 4.abc +deg chia hết cho 83 thì abc.deg chia hết cho 83
b) Chứng minh rằng nếu ab=3.cd thì abcd chia hết cho 43
c) Chứng minh rằng nếu abcd chia hết cho 29 thì a+3.b+9.c+27.d chia hết cho 29
d) Chứng minh rằng 10n - 36.n-1 chia hết cho 9 với n thuộc N và n lớn hơn hoặc bằng 2
mk cung dang mac bai nay nen mong nhieu bn giup do chi nha !
Đang định hỏi thì ....
Chứng minh rằng:
a, 3.600+3120 chia hết cho 9
b, Nếu abc = 2.deg thì abcdeg chia hết cho 87
c, Nếu abcd chia hết cho 29 thì (a+3b+9c+27d) chia hết cho 29
Cho N=dcba(có gạch ngang trên đầu) chứng minh rằng nếu N chia hết cho 29 thì (a+3b+9c+27d) cũng chia hết cho 9
Cho 3a+7b chia hết cho 29. Chứng minh rằng:
a) 32a+7b chia hết cho 29
b) 3a+36b chia hết cho 29
c) 35a+43b chia het cho 29
d) a+2b chia hết cho 29
A)...32a+7b=29a+3a+7b
29a tất nhiên chia hết cho 29: 3a+7b chia hết ho 29=>đpcm
b)3a+7b+29b lập luân (a)=>đpcm
c)2(3a+7b)+29a+29 a=>đpvm
d)
Chứng minh rằng nếu abcd chia hết cho 29 thì a+3b+9c+27d chia hết cho 29
\(\overline{abcd}=1000a+100b+10c+d=\)
\(=\left(986a+87b\right)+\left(14a+13b+10c+d\right)=\)
\(=\left(34.29.a+3.29.b\right)+\left(14a+13b+10c+d\right)=\)
\(=29\left(34a+3b\right)+\left(14a+13b+10c+d\right)⋮29\)
Mà \(29\left(34a+3b\right)⋮29\Rightarrow14a+3b+10c+d⋮29\)
\(\Rightarrow2\left(14a+13b+10c+d\right)=28a+26b+20c+2d⋮29\)
\(\Rightarrow28a+26b+20c+2d-29\left(a+b+c+d\right)=\)
\(=-3a-3b-9c-27d=-\left(a+30+9c+27d\right)⋮29\)
\(\Rightarrow a+3b+9c+27d⋮29\)
7)Chứng minh rằng :
a) abcabc chia hết cho 7,11,13
b) abcdeg chia hết cho 23 và 29 , biết rằng abc=2.deg
8)Chứng minh rằng nếu ab+cd+eg chia hết cho 11 thì abcdeg chia hết cho 11
7)a) abcabc : abc = 1001
abcabc = 1001 x abc . Mà 1001 chia hết cho 7; 11; 13 nên 1001 x abc chia hết cho 7; 11; 13 . Vậy abcabc chia hết cho 7; 11; 13 ( đpcm)
b .Vì abc = 2 . deg nên abcdeg : deg = 2001
abcdeg = 2001 x deg. Do 2001 chia hết cho 23 và 29 nên 2001 x deg chia hết cho 23 và 29 . Vậy abcdeg chia hết cho 23 và 29 ( đpcm)
Ta có :
abcabc = 1000abc + abc
= 1001 . abc
= 7 . 11 . 13 . abc chia hết cho 7 ; 11 ; 13
chứng minh rằng 1^3+2^3+3^3+...+104^3 chia hết cho 7
Đặt A = 1³ + 2³ + 3³ + ... + 104³
= 104² . 105² : 4
= 29811600
= 7.4258800 ⋮ 7
Vậy A ⋮ 7
chứng minh rằng 1^3+2^3+3^3+...+104^3 chia hết cho 7
Đặt A = 1³ + 2³ + 3³ + ... + 104³
= 104² . 105² : 4
= 29811600
= 7.4258800 ⋮ 7
Vậy A ⋮ 7