Cho S=a1+a2+a3+...+an chia hết cho 3
Chứng minh rằng:B=a31+a32+a33+...+a3n chia hết cho 3
Bài 1:Cho các số thực a,b,c thỏa mãn a^3 - b^2 - b = b^3 - c^2 - c = c^3 - a^2 - a =1/3. Chứng minh rằng a=b=c
Bài 2:Cho các số nguyên a1,a2,a3,...,an có tổng chia hết cho 3. Chứng minh P= a1^3 + a2^3 + a3^3 + ... +an^3 chia hết cho 3
Bài 2.
\(a^3-a=a\left(a^2-1\right)=\left(a-1\right)a\left(a+1\right)⋮3\)
( 3 số nguyên liên tiếp chia hết cho 3)
\(P-\left(a_1+a_2+a_3+...+a_n\right)=\left(a_1^3-a_1\right)+\left(a_2^3-a_2\right)+...+\left(a_n^3-a_n\right)\) chia hết cho 3
=> P chia hết cho 3
giúp mình với cho a1,a2,a3,...,an\(\in\)Z CMR a1^5+a2^5+...+an^5 chia hết cho 30 <=> a1+a2+...+an chia hết cho 30>>help me
Cho A1,A2,A3,A4,.....,A100 là các số nguyên thoả mãn A1+A2+A3+....+A100=2*2019
Chứng minh rằng : A1*2+A2*2+A3*2+.…..+A100*2 chia hết cho 2
\(A_1+A_2+A_3+...+A_{100}=2.2019\). Mà 2.2019 chia hết cho 2
\(\Rightarrow A_1+A_2+A_3+...+A_{100}⋮2\)
\(\Rightarrow A_1.2+A_2.2+A_3.2+...+A_{100}.2\)
\(=2.\left(A_1+A_2+A_3+...+A_{100}\right)⋮2\)
=> 2(A1+A2+A3+....+A100)
Mà 2 chia hết cho 2
=> 2(A1+A2+A3+....+A100) chia hết cho 2
=> A1.2+A2.2+A3.2+.…..+A100.2 chia hết cho 2(đpcm)
Ta luôn luôn có :
n²-n=n.n-n=n×(n-1)
Nxét:n và n-1 là 2 số tự nhiên liên tiếp⇒n×(n-1)⋮ 2 (1)
\(\Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a-\left(a_1+a_2+a_3+...+a_{100}\right)\\ \Rightarrow S=a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}-\left(a_1-a_2-a_3-...-a_{100}\right)\\ \Rightarrow S=\left(a\dfrac{2}{1}-a_1\right)+\left(a\dfrac{2}{2}-a_2\right)+\left(a\dfrac{2}{3}-a_3\right)+...\left(a\dfrac{2}{100}-a_{100}\right)⋮2\)
\(\Rightarrow a\dfrac{2}{1}+a\dfrac{2}{2}+a\dfrac{2}{3}+...+a\dfrac{2}{100}⋮2\)
Cho a1;a2;a3;a4;a5;.......;a2015 thuộc N (1;2;3;......;2015 là số thứ tự)
biết a1+a2+a3+.........+a2015=2015*2016
Chứng minh rằng a1^3 +a2^3 +a3^3 +...........+a2015^3 chia hết cho 6
Cho a1,a2,a3 .....an la moi so co gia tri = 1 hoac = (-1)
Biet a1 + a2 + a3 + ... +an = 0
C/m n chia hết cho 4
Hãy mô tả thuật toán cho các bài toán sau: a) Tính tổng các phần tử chia hết cho 3 và chia hết cho 9 trong dãy gồm n số a1, a2, a3, …, an.
cmr:(a1-a2)(a1-a3)(a1-a4)(a2-a3)(a2-a4)(a3-a4) chia hết cho 12
Viết thuật toán để giải bài toán Cho dãy số A gồm N số nguyên a1 a2 a3 ...aN đếm xem trong dãy có bao nhiêu số vừa chia hết cho 3 vừa chia hết cho 5
a, Xác định bài toán:
+Input: Dãy số a1,….,an và (0,5đ)
+Output: Số lượng số hạng trong dãy số a1,….,an có giá trị bằng 9 (0,5đ)
b, Thuật toán:
Bước 1.Nhập N và dãy số a1,….,an;
Bước 2. i ←1; n ← 0; (0,25đ)
Bước 3. Nếu aithì n ←n+1;
Bước 4. i → i+1 (0,25đ)
Bước 5. Nếu i > N thì thông báo số lượng số hạng bằng k trong dãy đã cho là n và kết thúc; (0,25đ)
Bước 6. Quay lại bước 3.
Bước 1: Nhập n và nhập dãy số
Bước 2: dem←0; i←1;
Bước 3: Nếu a[i] mod 3=0 và a[i] mod 5=0 thì dem←dem+1;
i←i+1;
Bước 4: Nếu i<=n thì quay lại bước 3
Bước 5: xuất dem
Bước 6: Kết thúc
CHO N SỐ a1, a2,...,an biết mỗi số trong chúng bằng 1 hoặc -1 và a1.a2+a2.a3+...+an-1.an+an.a1=0
chứng tỏ rằng n chia hết cho 4
Cho 5 số nguyên phân biệt a1 , a2 , a3 , a4 , a5 . Xét tích số sau :A=(a1-a2)(a1-a3)(a1-a4)(a1-a5)(a2-a3)(a2-a4)(a2-a5)(a3-a4)(a3-a5)(a4-a5).CMR A luôn chia hết cho 288
Bạn xem hướng dẫn ở đây:
Câu hỏi của Nguyễn Quang Đức - Toán lớp 6 - Học toán với OnlineMath