Tìm các số x và y trong bài toán sau :
x-3 = y.(x+2)
Bài 6. Giả sử x và y là các biến số. Hãy cho biết kết quả của việc thực hiện thuật toán sau: Bước 1. x x + y Bước 2. y x - y Bước 3. x x – y
Bài 7: Xây dựng thuật toán để giải bài toán: Cho trước ba số dương a, b, c. Hãy cho biết 3 số đó có phải là độ dài ba cạnh của một tam giác hay không? Bài 8. Tìm hiểu ví dụ 6 mục 4 bài 5. Viết lại thuật toán tìm giá trị lớn nhất và nhỏ nhất của dãy số a1,a2,a3…. an cho trước.
Bài 7:
#include <bits/stdc++.h>
using namespace std;
double a,b,c;
int main()
{
cin>>a>>b>>c;
if ((a+b>c) && (a+c>b) && (b+c>a)) cout<<"Day la ba canh trong mot tam giac";
else cout<<"Day khong la ba canh trong mot tam giac";
return 0;
}
Bài 1.Tìm x,y,z: a.x/5 = -12/20 ; b.2/y = 11/-66 ; c.-3/6 = x/-2 = -18/y = -z/24
Bài 2.Tìm các số nguyên x và y biết : x<0<y và:
-2/x = y/3
Bài 3.Tìm các số nguyên x và y biết x - y = 4 và:
x-3/y-2 = 3/2
Bài 4.Viết dạng chung của tất cả các phân số bằng phân số 21/28
Bài tập số 2:
Giả sử x và y là các biến
số. Hãy cho biết kết quả của việc thực hiện thuật toán sau:
Bước 1: x ← x + y
Bước 2: y ← x – y
Bước 3: x ← x – y
Bài tập số 3: Cho trước 3 số dương a,b và c. Hãy mô tả thuật toán cho biết ba số đó có thể là độ
dài ba cạnh của một tam giác hay không?
Bài tập số 4:
Cho 2 biến x và y. Hãy
mô tả thuật toán đổi giá trị của các biến nói trên (nếu cần) để x và y theo thứ
tự có giá trị không giảm.
Bài tập số 5:
Hãy cho biết kết quả của
thuật toán sau:
Bước 1: SUM ← 0; i ← 0.
Bước 2: Nếu i>100 thì chuyển tới bước 4.
Bước 3: i ← i + 1; SUM ← SUM + i. Quay lại bước 2;
Bước 4: Thông báo giá trị của SUM và kết thúc thuật toán.
Bài tập 1:
a. Xác định số học sinh trong lớp cùng mang họ Trần?
b. Tính tổng của các phần tử lớn hơn 0 trong dãy n số cho trước?
c. Tìm số các số có giá trị nhỏ nhất trong n số đã cho?
Bài làm
a. Input: danh sách học sinh trong lớp
Output: ds học sinh cùng mang họ Trần.
b. Input: dãy n số
Output: tổng các phần tử lớn hơn 0.
c. Input: n số đã cho
Output: số các số có giá trị nhỏ nhất.
Bài toán 1. So sánh: 200920 và 2009200910
Bài toán 2. Tính tỉ số , biết:
Bài toán 3. Tìm x; y biết:
a. . 25 – y2 = 8( x – 2009)
b. x3 y = x y3 + 1997
c. x + y + 9 = xy – 7.
Bài toán 4. Cho n số x1, x2, ..., xn mỗi số nhận giá trị 1 hoặc -1. Chứng minh rằng nếu x1.x2 + x2.x3 + ...+ xn.x1 = 0 thì n chia hết cho 4.
Bài toán 5. Chứng minh rằng:
Bài toán 6. Tìm tổng các hệ số của đa thức nhận được sau khi bỏ dấu ngoặc trong biểu thức: A(x) = ( 3 - 4x + x2 )2004 .( 3 + 4x + x2 )2005
Bài toán 7. Cho a là số gồm 2n chữ số 1, b là số gồm n + 1 chữ số 1, c là số gồm n chữ số 6. Chứng minh rằng a + b + c + 8 là số chính phương.
Bài toán 8. Chứng minh rằng với mọi số tự nhiên a, tồn tại số tự nhiên b sao cho ab + 4 là số chính phương.
Bài toán 9. Cho hai số tự nhiên a và b (a < b). Tìm tổng các phân số tối giản có mẫu bằng 7, mỗi phân số lớn hơn a nhưng nhỏ hơn b.
Bài toán 10. Chứng minh rằng: A = 1 + 3 + 5 + 7 + ... + n là số chính phương (n lẻ).
Bài toán 11. Tìm n biết rằng: n3 - n2 + 2n + 7 chia hết cho n2 + 1.
Bài toán 12. Tìm số tự nhiên n để 1n + 2n + 3n + 4n chia hết cho 5
Bài 11:
Ta có: \(n^3-n^2+2n+7⋮n^2+1\)
\(\Leftrightarrow n^3+n-n^2-1+n+8⋮n^2+1\)
\(\Leftrightarrow n^2-64⋮n^2+1\)
\(\Leftrightarrow n^2+1\in\left\{1;5;13;65\right\}\)
\(\Leftrightarrow n^2\in\left\{0;4;64\right\}\)
hay \(n\in\left\{0;-2;2;8;-8\right\}\)
bài 1 : tìm các số x, y , z , t biết :
x/2 = y/3 ; 7x = 2t ; z/t = 5/7 và y+ 2z + 3t = 10z
bài 2 : tìm các số x , y biết a , x:y = 4:7 và x +y = 44
b, x/2 = y/5 và x + y = 28
bài 3 : cho M = x + 2y - 3z / x - 2y + 3z . tính giá trị của M biết x ,y , z tỉ lệ với 5 ; 4 ; 3
bài 4 : cho a/b = c/d . chứng minh a+3b/b = c+3d/d
( các tỉ số đều có nghĩa )
làm nhanh cho mình 4 bài này với
cảm ơn các friends nhiều
Bài 4:
Đặt \(\dfrac{a}{b}=\dfrac{c}{d}=k\)
=>\(a=b\cdot k;c=d\cdot k\)
\(\dfrac{a+3b}{b}=\dfrac{bk+3b}{b}=\dfrac{b\left(k+3\right)}{b}=k+3\)
\(\dfrac{c+3d}{d}=\dfrac{dk+3d}{d}=\dfrac{d\left(k+3\right)}{d}=k+3\)
Do đó: \(\dfrac{a+3b}{b}=\dfrac{c+3d}{d}\)
Bài 2:
a: x:y=4:7
=>\(\dfrac{x}{4}=\dfrac{y}{7}\)
mà x+y=44
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{4}=\dfrac{y}{7}=\dfrac{x+y}{4+7}=\dfrac{44}{11}=4\)
=>\(x=4\cdot4=16;y=4\cdot7=28\)
b: \(\dfrac{x}{2}=\dfrac{y}{5}\)
mà x+y=28
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{x}{2}=\dfrac{y}{5}=\dfrac{x+y}{2+5}=\dfrac{28}{7}=4\)
=>\(x=4\cdot2=8;y=4\cdot5=20\)
Bài 3:
Đặt \(\dfrac{x}{5}=\dfrac{y}{4}=\dfrac{z}{3}=k\)
=>x=5k; y=4k; z=3k
\(M=\dfrac{x+2y-3z}{x-2y+3z}\)
\(=\dfrac{5k+2\cdot4k-3\cdot3k}{5k-2\cdot4k+3\cdot3k}\)
\(=\dfrac{5+8-9}{5-8+9}=\dfrac{4}{6}=\dfrac{2}{3}\)
giải bài toán tìm x,y,z biết x/2=y/3=z/4 và x^2+y^2+z^2=116
các bạn giải giúp mình với
ta có
\(\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\Rightarrow\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}\)
Áp dụng tính chất của dãy tỉ số bằng nhau ta có :
\(\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Rightarrow x^2=16\Rightarrow\orbr{\begin{cases}x=4,y=6,z=8\\x=-4,y=-6,z=-8\end{cases}}\)
Đặt \(N:\frac{x}{2}=\frac{y}{3}=\frac{z}{4}\)
\(\Leftrightarrow N^2=\frac{x^2}{4}=\frac{y^2}{9}=\frac{z^2}{16}=\frac{x^2+y^2+z^2}{4+9+16}=\frac{116}{29}=4\)
\(\Leftrightarrow N=\pm2\)
Nếu \(N=\left(-2\right)\):
\(\frac{x}{2}=-2\Leftrightarrow y=-4\)
\(\frac{y}{3}=-2\Leftrightarrow y=-6\)
\(\frac{z}{4}=-2\Leftrightarrow y=-8\)
Nếu \(N=2\):
\(\frac{x}{2}=2\Leftrightarrow y=4\)
\(\frac{y}{3}=2\Leftrightarrow y=6\)
\(\frac{z}{4}=2\Leftrightarrow y=8\)
Sửa lại giúp mình vài chỗ:
Nếu \(N=\left(-2\right)\)
\(\frac{x}{2}=-2\Leftrightarrow z=-4\)
\(\frac{z}{4}=-2\Leftrightarrow z=-8\)
Nếu \(N=2\)
\(\frac{x}{2}=2\Leftrightarrow x=4\)
\(\frac{z}{4}=2\Leftrightarrow z=8\)
Bài Toán Về Số Học:
Trên bảng có viết các số 4 ; 5; 6 ; 7; 8 ; 9. Mỗi bước, người ta chọn 2 số x ; y trên bảng, xóa đi và thay bằng hai số \(x+y+\sqrt{x^2+y^2}\) và \(x+y-\sqrt{x^2+y^2}\). Chứng minh rằng , trong mọi thời điểm, các số trên bảng đều lớn hơn 1 và luôn có một số nhỏ hơn 7.
P/s: Bài toán được biên soạn bởi thầy Võ Quốc Bá Cẩn và thầy Trần Quốc Anh
Em nhờ quý thầy cô giáo và các bạn yêu toán gợi ý , giúp đỡ với ạ! Em cám ơn nhiều ạ!
bài 1; tìm số tự nhiên x, y biết
a, 5^x +5^x+2= 650
b, 3^x-1+5.3^x-1=162
c, 2^x+1. 3^y=12^x
d, 10^x : y^5=y^20
e,2^x=4^y-1 và 27^y= 3^x+8
bài 2 : tìm x trong các đẳng thức sau
a, I x-1I+3x=1
b,I5x-3I-x=7
a)5x+5x+2=650
\(\Rightarrow5^x\left(1+5^2\right)=650\)
\(\Rightarrow5^x\cdot26=650\)
\(\Rightarrow5^x=25\)
\(\Rightarrow5^x=5^2\)
\(\Rightarrow x=2\)
b)\(3^{x-1}+5\cdot3^{x-1}=162\)
\(\Rightarrow3^{x-1}\cdot\left(1+5\right)=162\)
\(\Rightarrow3^{x-1}\cdot6=162\)
\(\Rightarrow3^{x-1}=27\)
\(\Rightarrow3^{x-1}=3^3\)
\(\Rightarrow x-1=3\)
\(\Rightarrow x=4\)
c và d bài 1 có tại đây Câu hỏi của Vương Hàn - Toán lớp 7 | Học trực tuyến
Bài 1: Cho bảng sau :
x | 1 | -2 | 1,6 | 0,5 | 10 |
y | 8 | -4 | 5 | 16 | 0,8 |
Hỏi x có tỉ lệ nghịch với y không?
Bài 2: Cho x, y là 2 đại lượng tỉ lệ nghịch
a) Tìm hệ số tỉ lệ ?
b) Thay mỗi dấu ? trong bảng trên bằng 1 số thích hợp?
x | x1=2 | x2=3 | x3=4 | x=5 |
y | 30 | ? | ? | ? |
Giúp với các thần đồng toán học. Cần gấp lắm ạ.