Cho tam giác ABC.Gọi E và F là trung điểm của cạnh BC và AC.BF cắt AE tại I . Chứng minh tỉ số AE trên AI chiếm \(\frac{2}{3}\)
Cho hình vuông ABCD và điểm E tùy ý trên cạnh BC. Tia Ax vuông góc với AE tại A cắt CD kéo dài tại F. Kẻ trung tuyên AI của tam giác AEF và kéo dài cắt cạnh CD tại K.
a, Chứng minh AE = AF
b, Chứng minh các tam giác AKF, CAF đồng dạng và A F 2 = K F . C F
c, Cho AB = 4 cm, BE = 3 4 BC. Tính diện tích tam giác AEF
d, Khi E di động trên cạnh BC, tia AE cắt CD tại J. Chứng minh biểu thức A E . A J F J có giá trị không phụ thuộc vị trí của E
a, Ta có ∆ABE = ∆ADF(g.c.g) => AE = AF
b, Ta có: ∆AKF ~ ∆CAF ( F ^ chung và F A K ^ = F C A ^ = 45 0 )
=> A F H F = C F A F => A F 2 = K F . C F
c, S A E F = 93 2 c m 2
d, Ta có: AE.AJ=AF.AJ=AD.FJ
=> A E . A J F J = AD không đổi
Cho tam giác ABC cân (AB=AE).Trên cạnh AB lấy đoạn AE và trên AC lấy đoạn CF=AE. Nối E và F, gọi I là trung điểm của EF, AI kéo dài gặp BC tại D. Chứng minh tứ giác AEDF là hình bình hành
cho tam giác ABC.Gọi M,N thứ tự là trung điểm củaAB và AC trên tia đối của tia NM lấy điểm I sao cho NI=NM
a)Chứng minh tam giác ANI= tam giác CNM
b)CM:MC=AI và MC//AI
c)CM:MN//BC và MN=1/2BC
d)trên đoạn AI lấy điểm E trên đoạn MC lấy F sao cho AE=CF.CM 3 điểm E,N.F thẳng hàng
giúp mình với nha
Cho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BCCho hình vuông ABCD trên cạnh BC lấy điểm E. Từ A kẻ đường thẳng vuông góc vơi AE cắt đường thẳng CD tại F. Gọi I là trung điểm của EF. AI cắt CD tại M. Qua E dựng đường thẳng song song với CD cắt AI tại N.
a) Chứng minh tứ giác MENF là hình thoi.
b) Chứng minh chi vi tam giác CME không đổi khi E chuyển động trên BC
Cho tam giác ABC vuông tại A (AB < AC). Kẻ tia phân giác của góc ABC cắt AC tại D. Trên cạnh BC lấy điểm E sao cho: BE = AB. 1) Chứng minh rằng: ∆ABD = ∆EBD; 2) Gọi giao điểm của BD và AE là I. Hỏi I có là trung điểm của AE không? Vì sao? 3) Kéo dài ED cắt AB tại K. Chứng minh: AK = EC và AE // KC.
b, Vì ∆ABD=∆EBD
=>BAD=BED=90°
=>DE//BC
Ta có AH vuông góc BC
DE vuông góc BC
=>AH//DE(đpcm)
c,Đó AH//DE (đpcm)
=>AH//DK.
Cho tam giác ABC cân tại A. Trên cạnh AB, AC lấy E, F sao cho AE = CF. Gọi I là trung điểm của EF. Tia AI cắt BC tại M. Chứng minh IA = IM
Cho tam giác ABC vuông tại A . Tia phân giác của góc B cắt AC ở D, E là điểm trên cạnh BC sao cho BE = BA .
a) gọi F là giao điểm của DE và AB . chứng minh rằng DC = DF
b) Chứng minh AD< DC
c) Chứng minh BD là đường trung trực của AE và AE // FC
Xét ΔBAD và ΔBDE có:
BD là cạnh chung
B1=B2 (BD là tia phân giác của \(\widehat{B}\))
BA = BE (GT)
Nên ΔBAD= ΔBDE (c.g.c)
=>\(\widehat{ADB}=\widehat{BDE}\)
Ta có:\(\widehat{ADB}+\widehat{ADF}=\widehat{BDF}\)
\(\widehat{BDE}+\widehat{EDC}=\widehat{BDC}\)
Mà :\(\widehat{ADB}=\widehat{BDE}\)(CMT)
\(\widehat{ADF}=\widehat{EDC}\)( 2 góc đối đỉnh)
=>\(\widehat{BDF}=\widehat{BDC}\)
Xét ΔBDF và Δ BDC, có:
\(\widehat{BDF}=\widehat{BDC}\)
BD là cạnh chung
B1=B2
Nên ΔBDF=ΔBDC (g.c.g)
=>DC = DF
b)Ta có:ΔEDC vuông tại E=> DC là cạnh lớn nhất hay DC>DE
MÀ DE=AD (ΔBAD và ΔBDE)
=> AD< DC
c) Ta có BE=BA=>ΔBEA cân tại B
Mà BD là tia phân giác=>BD là đường trung trực
Vì :ΔBDF=ΔBDC=>BF=BC
=>ΔBFC cân tại B=>\(\widehat{C}=\widehat{F}\)
Ta có:\(\widehat{B}+\widehat{C}+\widehat{F}=180^o\)
=>\(\widehat{B}+\widehat{C}.2=180^O\)
=>\(\widehat{C}=\dfrac{180^O-\widehat{B}}{2}\)(1)
vÌ ΔBAE cân tại B
Tương tự ta có:
\(\widehat{E}=\dfrac{180^o-\widehat{B}}{2}\)(2)
Từ (1) và (2)=> \(\widehat{E}=\widehat{C}\)
Mà 2 góc này ở vị trí đồng vị=>AE // FC
Cho tam giác nhọn ABC trên cạnh AB lấy điểm D sao cho AD=2/5AB, trên cạnh AC lấy điểm E sao cho AE=2/5AC a/CM DE//BC b/ đường trung tuyến AI cắt DE tại M. Chứng minh M là trung điểm của DE. c/ đường phân giác của góc BAC cắt BC tại I. Chứng minh IB. AE=IC.AD
a: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
b: Xét ΔABI có DM//BI
nên DM/BI=AD/AB
Xét ΔACI có EM//IC
nên EM/CI=AE/AC
=>DM/BI=EM/CI
=>DM=EM
=>M là trung điểm của DE
c: AI là phân giác
=>IB/IC=AB/AC=AD/AE
=>IB*AE=IC*AD
cho tam giác ABC,gọi M,N lần lượt là trung điểm của AB,AC và CM cắt BN tại E và kẻ đường thẳng AE cắt BC tại F.Tính tỉ số EM/EC và chứng minh F là trung điểm của BC