tìm x:1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=16/51
tìm x
1/2.1+1/2.3+1/3.4+1/4.5+.....+1/x(x+1)
1+2.(1/2.3+1/3.4+1/4.5+...+1/x.(x+1)=3/2
1+2.( 1/2-1/3+1/3-1/4+....+1/(x-1)-1/x+1)=3/2
1+2.(1/2-1/x+1)=3/2
1-2/x+1=3/2-1
tự tính
tìm x
1/2.3+1/3.4+1/4.5+......+1/x.(x+1)=299/60000
giúp mìn với 1/1.2 +1/2.3+1/3.4+1/4.5+....+1/[x-1].x+1/x.[x+1]
tính: A=1/4+1/12+1/24+....+1/220
B=(1-1/4)x(1-1/9)x(1-1/16)x...x(1-1/100)
C=(1-2/2.3)x(1-2/3.4)x(1-2/4.5)x....x(1-2/99.100)
cả . ,x đều là nhân
1.Tìm x:
\(\frac{x}{2}\)+\(\frac{x}{3}=\frac{1}{4}\)
2.Tính
M=\(\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+......+\frac{1}{2008.2009}\)
Bài 2:
\(M=\frac{1}{2.3}+\frac{1}{3.4}+\frac{1}{4.5}+...+\frac{1}{2008.2009}\)
\(\Rightarrow M=\frac{3-2}{2.3}+\frac{4-3}{3.4}+\frac{5-4}{4.5}+...+\frac{2009-2008}{2008.2009}\)
\(\Rightarrow M=\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+\frac{1}{4}-\frac{1}{5}+...+\frac{1}{2008}-\frac{1}{2009}=\frac{1}{2}-\frac{1}{2009}\)
Bài 1:
Ta có: \(\frac{x}{2}+\frac{x}{3}=x\left(\frac{1}{2}+\frac{1}{3}\right)=\frac{5}{6}x=\frac{1}{4}\Rightarrow x=\frac{3}{10}\)
Tính hợp lý
A = 1/1.2 x 4/2.3 x 9/3.4 x 16/4.5 x 25/5.6 x 36/6.7
Cảm ơn mọi người nhé
ta phân tích thành
\(\frac{1}{1\cdot2}\)x\(\frac{2\cdot2}{2\cdot3}\)x\(\frac{3\cdot3}{3\cdot4}\)x......x\(\frac{5\cdot5}{5\cdot6}\)x\(\frac{6\cdot6}{6\cdot7}\)
Tử nhân tử mẫu nhân mẫu ta có
1x2x2x3x3x.........x5x5x6x6
1x2x2x3x3x4x....x5x6x6x7
Rút gọn ta có
\(\frac{1}{7}\)
Vậy A=\(\frac{1}{7}\)
Tìm một số tự nhiên x biết: 1/2.3 + 1/3.4 + 1/4.5 +....+ 1/x.(x+1)=9/20
(chấm là nhân)
\(\dfrac{1}{2\times3}+\dfrac{1}{3\times4}+\dfrac{1}{4\times5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{9}{20}\)
\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...-\dfrac{1}{x}+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{2}+0+0+0+...+0-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\dfrac{1}{x+1}=\dfrac{1}{20}\)
\(x+1=20\)
\(x=20-1\)
\(x=19\)
Tìm một số tự nhiên x biết: 1/2.3 + 1/3.4 + 1/4.5 +....+ 1/x.(x+1)=9/20
(chấm là nhân)
Có: \(\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+...+\dfrac{1}{x\left(x+1\right)}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+...+\dfrac{1}{x-1}-\dfrac{1}{x}+\dfrac{1}{x}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{2}-\dfrac{1}{x+1}=\dfrac{9}{20}\)
\(\Rightarrow\dfrac{1}{x+1}=\dfrac{1}{20}\)
\(\Rightarrow x+1=20\Leftrightarrow x=19\)