\(A=\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+...+\dfrac{1}{496.501}\)
Tính:
a) A = \(\dfrac{1}{1.2}\) + \(\dfrac{1}{2.3}\) + \(\dfrac{1}{3.4}\) +...+ \(\dfrac{1}{998.999}\) + \(\dfrac{1}{999.1000}\)
b) B = \(\dfrac{1}{1.6}\) + \(\dfrac{1}{6.11}\) + \(\dfrac{1}{11.16}\) +...+ \(\dfrac{1}{495.500}\)
c) C = \(\dfrac{1}{1.2.3}\) + \(\dfrac{1}{2.3.4}\) + \(\dfrac{1}{3.4.5}\) +...+ \(\dfrac{1}{998.999.1000}\)
(Mong mn giúp ạ)
a.
$A=\frac{2-1}{1.2}+\frac{3-2}{2.3}+\frac{4-3}{3.4}+....+\frac{1000-999}{999.1000}$
$=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{999}-\frac{1}{1000}$
$=1-\frac{1}{1000}=\frac{999}{1000}$
b.
$5B=\frac{5}{1.6}+\frac{5}{6.11}+\frac{5}{11.16}+....+\frac{5}{495.500}$
$=\frac{6-1}{1.6}+\frac{11-6}{6.11}+\frac{16-11}{11.16}+....+\frac{500-495}{495.500}$
$=1-\frac{1}{6}+\frac{1}{6}-\frac{1}{11}+....+\frac{1}{495}-\frac{1}{500}$
$=1-\frac{1}{500}=\frac{499}{500}$
$\Rightarrow B=\frac{499}{500}: 5= \frac{499}{2500}$
c.
$2C=\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{998.999.100}$
$=\frac{3-1}{1.2.3}+\frac{4-2}{2.3.4}+\frac{5-3}{3.4.5}+...+\frac{1000-998}{998.999.1000}$
$=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{998.999}-\frac{1}{999.1000}$
$=\frac{1}{1.2}-\frac{1}{999.1000}=\frac{499499}{999000}$
$\Rightarrow C=\frac{499499}{999000}:2=\frac{499499}{1998000}$
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
1/Tính:
a. S=\(\dfrac{5^2}{1.6}\) + \(\dfrac{5^2}{6.11}\)+ \(\dfrac{5^2}{11.16}\) + \(\dfrac{5^2}{16.21}\) + \(\dfrac{5^2}{21.26}\)
b. (1 - \(\dfrac{1}{2}\)) . (1 - \(\dfrac{1}{3}\) ) . (1- \(\dfrac{1}{4}\) ) . ( 1 - \(\dfrac{1}{5}\) ) .... ( 1 - \(\dfrac{1}{19}\) ) . ( 1 - \(\dfrac{1}{20}\))
Mk cần gấp lắm ~help me please~
Giải:
a) S=52/1.6+52/6.11+52/11.16+52/16.21+52/21.26
S=5.(5.1/6+5/6.11+5/11.16+5/16.21+5/21.26)
S=5.(1/1-1/6+1/6-1/11+1/11-1/16+1/16-1/21+1/21-1/26)
S=5.(1/1-1/26)
S=5.25/26
S=125/26
b) (1-1/2).(1-1/3).(1-1/4).(1-1/5).....(1-1/19).(1-1/20)
=1/2.2/3.3/4.4/5.....18/19.19/20
=1.2.3.4.....18.19/2.3.4.5.....19.20
=1/20
Chúc bạn học tốt!
chứng tỏ rằng với mọi n thuộc N ta luôn có
\(\dfrac{1}{1.6}+\dfrac{1}{6.11}+\dfrac{1}{11.16}+....+\dfrac{1}{\left(5n+1\right).\left(5n+6\right)}=\dfrac{n+1}{5n+6}\)
\(VT=\dfrac{1}{5}\left(\dfrac{5}{1\cdot6}+\dfrac{5}{6\cdot11}+...+\dfrac{5}{\left(5n+1\right)\left(5n+6\right)}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-...+\dfrac{1}{5n+1}-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\left(1-\dfrac{1}{5n+6}\right)\)
\(=\dfrac{1}{5}\cdot\dfrac{5n+6-1}{5n+6}\)
\(=\dfrac{n+1}{5n+6}=VP\)
Tính giá trị các biểu thức:
A=(-1)+(-5)+(-9)+...+(-101)
B=\(\dfrac{-5}{17}\).\(\dfrac{8}{19}\)+\(\dfrac{-12}{17}\). \(\dfrac{8}{19}\) - \(\dfrac{11}{19}\)
C=\(\dfrac{10}{1.6}\)+\(\dfrac{10}{6.11}\)+\(\dfrac{10}{11.16}\)+...+\(\dfrac{10}{2016.2021}\)
`#lv`
`A=(-1)+(-5)+(-9)+...+(-101)`
`=-(1+5+9+...+101)`
Số số hạng là :
`[101-(-1)]:4+1=26(` số hạng `)`
Tổng là :
`[(-101)+(-1)]xx26:2=-1326`
Vậy `A=-1326`
__
`B=-5/17 . 8/19 + (-12)/17 . 8/19 - 11/19`
`=((-5)/17+(-12)/17).8/19-11/19`
`=-1.8/19-11/19`
`=-8/19-11/19`
`=-8/19+(-11)/19`
`=-19/19`
`=-1`
__
`C=10/1.6 + 10/6.11 + 10/11.16 + ... + 10/2016.2021`
`=2.(1-1/6+1/6-1/11+...+1/2016-1/2021)`
`=2(1-1/2021)`
`=2. (2021/2021-1/2021)`
`=2. 2020/2021`
`=4040/2021`
Bài 1 : Tính
a) A = \(\left(\dfrac{2}{3}+\dfrac{3}{4}-\dfrac{7}{12}\right):\left(\dfrac{55}{123}+\dfrac{555}{1234}+\dfrac{5555}{12345}\right)\)
b) B = \(\dfrac{5^2}{1.6}+\dfrac{5^2}{6.11}+\dfrac{5^2}{11.16}+...+\dfrac{5^2}{101.106}\)
c) C = \(\dfrac{2x^2+3x-1}{3x-2}\) với \(\left|x-1\right|=2\)
a, bạn tự làm
b, \(B=\dfrac{5^2}{5}\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+...+\dfrac{1}{101}-\dfrac{1}{106}\right)\)
\(=5\left(1-\dfrac{1}{106}\right)=\dfrac{5.105}{106}=\dfrac{525}{106}\)
c, đk : \(x\ne\dfrac{2}{3}\)
Ta có : \(\left|x-1\right|=2\Leftrightarrow\left[{}\begin{matrix}x=3\\x=-1\end{matrix}\right.\)(tm)
Với x = 3 suy ra \(C=\dfrac{2.9+9-1}{3.3-2}=\dfrac{26}{7}\)
Với x = -1 suy ra \(C=\dfrac{2-3-1}{-3-2}=\dfrac{-2}{-5}=\dfrac{2}{5}\)
tìm X
\(\dfrac{5x}{1.6}+\dfrac{5x}{6.11}+\dfrac{5x}{11.16}+\dfrac{5x}{16.21}+\dfrac{5x}{21.26}+\dfrac{5x}{26.31}\)
\(\dfrac{5x}{1.6}+\dfrac{5x}{6.11}+\dfrac{5x}{11.16}+\dfrac{5x}{16.21}+\dfrac{5x}{21.26}+\dfrac{5x}{26.31}=1\)
\(=x\left(\dfrac{5}{1.6}+\dfrac{5}{6.11}+\dfrac{5}{11.16}+\dfrac{5}{16.21}+\dfrac{5}{21.26}+\dfrac{5}{26.31}\right)=1\)
\(=x\left(1-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{21}+\dfrac{1}{21}-\dfrac{1}{26}+\dfrac{1}{26}-\dfrac{1}{31}\right)=1\)
\(=x\left(1-\dfrac{1}{31}\right)=1\)
\(\Rightarrow x=1:\left(1-\dfrac{1}{31}\right)=\dfrac{31}{30}\)
S=1/1.6+1/6.11+1/11.16+.....+1/496.501
5S=5.(1/1.6+1/6.11+...+1/496.501)
5S=5/1.6+5/6.11+...+5/496.501
5S=1/1-1/6+1/6-1/11+...+1/496-1/501
5S=1-1/501
5S=500/501
S=500/501:5=100/501
k nhé
ta co:5S=5/1.6+5/6.11+5/11.16+...+5/496.501
=1-1/6+1/6-1/11+1/11-1/16+.....+1/496-1/501
=1-1/501=500/501
=>S=500/501:5=100/501
MK đau tien nha bn
S = 1/1.6+1/6.11+1/11.16+...+1/496.501
1/1.6 + 1/6.11+ 1/11.16+ ....
số thứ 100 có dạng 1/(496.501)
do đó tổng trên bằng :
1/5( 1/1- 1/501)
= 100/ 501
1/1-1/6+1/6-1/11+...+1/496-1/501
=1/1-1/501=500/501