cho tam giác ABC , vẽ trung tuyến AM , gọi I là trung điểm am , bi cắt ac tại k chứng minh AK = 1\2 KC
cho tam giác ABC , vẽ trung tuyến AM , gọi I là trung điểm am , bi cắt ac tại k chứng minh AK = 1\2 KC
qua C kẻ đường thẳng song song với BI cắt AM tại N. xét tam giác MNC có BI song song với NC nên MI/MN=BM/MC . Do đó MN=MI=AI nên AI/AN=1/3. Mà AI/AN=AK/AC ( IK song song với NC) suy ra AK/AC=1/3 => AK/KC=1/2
kẻ ME song song BK
ta có : MB = MC
suy ra ME là đường trung bình tam giác BKC
suy ra ME song song BK , EC = EK (1)
lại có ME SONG SONG IK , AI = IM
suy ra IK là đường trung bình tam giác AME
suy ra AK =KE (2)
từ (1) và (2) suy ra EC=EK=AK
suy ra AK = 1\2 KC
a) Cho tam giác ABC, M là trung điểm của BC, D trên AC sao cho CD = 2AD. AM cắt BD tại I. Chứng minh I là trung điểm của AM
b) Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm của AM, BI cắt AC tại D. Chứng minh AD = 1/2DC
Cho tam giác ABC; AM là đường trung tuyến. Gọi I là trung điểm của AM. Tia BI cắt tại AC tại K. Biết AC = 9 cm thì độ dài AK là
Qua M kẻ đường thằng MN song song với IK cắt AC tại N
Dễ thấy MN là đường trung bình của tam giác BKC nên KN = NC (1)
Mặt khác, ta cũng chứng minh được IK là đường trung bình của tam giác AMN
=> AK = KN (2)
Từ (1) và (2) suy ra AK = KN = NC
Mà AC = AK + KN + NC = 3AK = 9 cm => AK = 3 cm
cho tam giác ABC vuông tại A ,trung tuyến AM .Trên tia đối của tia MA lấy điểm K sao cho AM=MK a)chứng minh tam giác MAB=tam giác MKC b)chứng minh AB song song với KC từ đó ta chứng minh góc ACK=90 độ c)gọi I là trung điểm AC chứng minh BI=KI d)gọi E là giao điểm của IM với BK.chứng miinh IE vuông góc với BK
a) Xét ΔMAB và ΔMKC có
MA=MK(gt)
\(\widehat{AMB}=\widehat{KMC}\)(hai góc đối đỉnh)
MB=MC(M là trung điểm của BC)
Do đó: ΔMAB=ΔMKC(c-g-c)
cho tam giác ABC vuông tại A ,trung tuyến AM .Trên tia đối của tia MA lấy điểm K sao cho AM=MK
a)chứng minh tam giác MAB=tam giác MKC
b)chứng minh AB song song với KC từ đó ta chứng minh góc ACK=90 độ c)gọi I là trung điểm AC chứng minh BI=KI d)gọi E là giao điểm của IM với BK.chứng miinh IE vuông góc với BK
giúp mik với !!
a: Xét ΔMAB và ΔMKC có
MA=MK
góc AMB=góc KMC
MB=MC
=>ΔMAB=ΔMKC
b: ΔMAB=ΔMKC
=>góc MAB=góc MKC
=>AB//KC
=>KC vuông góc AC
=>góc ACK=90 độ
c: Xét ΔIAB vuông tại A và ΔICK vuông tại C có
IA=IC
AB=CK
=>ΔIAB=ΔICK
=>IB=IK
d: Xét ΔABC có CI/CA=CM/CB
nên IM//AB
=>IM vuông góc KB
Cho tam giác ABC vuông ở A, AB = 5cm, BC = 13cm. Vẽ đường trung tuyến AM. Gọi I là trung điểm của AM, tia BI cắt AC tại D. Gọi N là trung điểm của DC. a) Chứng minh BD = 2MN. b) Chứng minh D là trung điểm của AN. c) Tính AC, BD. d) Tính BI.
a: Xét ΔCDB có
M,N lần lượt là trung điểm của CB,CD
=>MN là đường trung bình của ΔCDB
=>MN//BD và \(MN=\dfrac{BD}{2}\)
\(NM=\dfrac{BD}{2}\)
nên BD=2MN
b: NM//BD
=>ID//NM
Xét ΔANM có
I là trung điểm của AM
ID//NM
Do đó: D là trung điểm của AN
c: ΔABC vuông tại A
=>\(AB^2+AC^2=BC^2\)
=>\(AC^2+5^2=13^2\)
=>\(AC^2=169-25=144\)
=>AC=12(cm)
D là trung điểm của AN
nên \(AD=DN=\dfrac{AN}{2}\)
N là trung điểm của DC
nên \(DN=CN=\dfrac{DC}{2}\)
=>\(AD=DN=CN=\dfrac{AC}{3}=4\left(cm\right)\)
ΔABD vuông tại A
=>\(AB^2+AD^2=BD^2\)
=>\(BD^2=4^2+5^2=41\)
=>\(BD=\sqrt{41}\left(cm\right)\)
Cho tam giác ABC, trung tuyến AM, I là trung điểm của AM, K là giao của BI và AC. Chứng minh AK = 1/3 AC?
Dễ lắm, dựa vào tính chất đường trug bình
Gợi í : Trên KC lấy E / KE= KC
Chứng minh IK là đường trung bình tam giác AME
=> AK= KE mà KE=KC => AK= 1/3 AC
NS đến đây bạn hiểu rồi chứ, nếu ko hiểu chỗ nào thì hỏi mik nha ^^
Cho tam giác ABC, trung tuyến AM, I là trung điểm của AM, K là giao của BI và AC. Chứng minh AK = 1/3 AC?
Cho tam giác ABC có trung tuyến AM. Gọi I là trung điểm AM, BI cắt AC tại D. Chứng minh AD = \(\frac{1}{2}\)DC