a ,tìm các hệ số a,b,c biết rằng:
3x2 (ax2-2bx-3c)=3x4-12x3+27x2với mọi x
làm hộ mk nha
Tìm các hệ số a, b, c biết rằng
\(3x^2\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x\) với mọi x
Tìm các hệ số a,b,c biết rằng\(3x^2\cdot\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x^2\)với mọi x
\(3x^2.\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x^2\)
\(\Leftrightarrow3ax^4-6bx^3-9cx^2=3x^4-12x^3+27x^2\)
\(\Leftrightarrow\hept{\begin{cases}3a=3\\-6b=-12\\-9c=27\end{cases}\Leftrightarrow\hept{\begin{cases}a=1\\b=2\\c=-3\end{cases}}}\)
Vậy a=1;b=2;c=-3
a,tìm các hệ số a,b,c biết rằng
\(3x^4\left(ax^2-2bx-3c\right)=3x^4-12x^3+27x^2\) với mọi x
b,,tìm các hệ số m,n,p biết rằng
\(3x^k\left(mx^2+nx+p\right)=3x^{k+2}-12x^{k+1}+3x^k\)
a) Tìm hệ số a,b,c biết rằng: 3x2 ( ax2- 2bx - 3c) = 3x4 - 12x3+ 27x2 với mọi x
b) Tìm hệ số m,n,p biết: -3xk (mx2+ nx + p) = 3xk+2 - 12xk-1 + 3xk với mọi x
ai giúp mih với
mih đang cần gấp
Tìm a và b biết rằng phương trình ax2-2bx+3=0 có tập ngiệm S=(-2;1)
Thay \(x=-2\) vào phương trình, ta có
\(a\left(-2\right)^2-2b\left(-2\right)+3=0\)
\(\Leftrightarrow4\left(a+b\right)=-3\)
\(\Leftrightarrow a+b=-\dfrac{3}{4}\) (1)
Thay \(x=1\) vào phương trình, ta có
\(a.1^2-2b.1+3=0\)
\(\Leftrightarrow a-2b=-3\) (2)
Trừ (2) cho (1) theo vế, ta được
\(-3b=-\dfrac{9}{4}\Rightarrow b=\dfrac{3}{4}\) \(\Rightarrow a=-\dfrac{3}{4}-\dfrac{3}{4}=-\dfrac{3}{2}\)
Vậy \(a=-\dfrac{3}{2}\) và \(b=\dfrac{3}{4}\)
Tìm bậc của các đa thức sau (a là hằng số )
a, 2x - 5xy + 3x2
b, ax2 + 2x2 - 3
c, ax3 + 2xy - 5
d, 4y2 - 3y - 3y4
e, -3x5 - 1/2 x3y - 3/4 xy2 + 3x5 + 2
a)bậc của da thức 2x-5xy+3x2 là:5
b)bậc của da thức ax2+2x2 là:4
c)bậc của da thức ax3+2xy là:5
d)bậc của da thức 4y2-3y4 là:6
e)bậc của da thức -3x5-\(\dfrac{1}{2}\)x3y-\(\dfrac{3}{4}\)xy2+3x5+2 là:17
Bài 6: (0,5 điểm)
Cho đa thức P(x) = ax2 + bx + c trong đó các hệ số a, b, c là các số nguyên. Biết rằng giá trị của đa thức chia hết cho 5 với mọi giá trị nguyên của x. Chứng minh rằng a, b, c đều chia hết cho 5.
tham khảo
Vì P ( x ) = ax2ax2 + bx + c chia hết cho 5 với mọi giá trị nguyên của x nên :
P ( 0 ) ; P ( 1 ) ; P ( - 1 ) tất cả đều chia đều cho 5 .
Ta có :
P ( 0 ) chia hết cho 5
⇒ a . 02+ b . 0 + c chia hết cho 5
⇒ c chia hết cho 5
P ( 1 ) chia hết cho 5
⇒ a . 12 + b . 1 + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Vì c chia hết cho 5 ⇒ a + b chia hết cho 5 ( 1 )
P ( - 1 ) chia hết cho 5
⇒ a . (−1)2(−1)2 + b . ( - 1 ) + c chia hết cho 5
⇒ a + b + c chia hết cho 5
Từ ( 1 ) ; ( 2 ) ⇒ a + b + a - b chia hết cho 5
⇒ 2a chia hết cho 5
Mà ƯCLN ( 2 ; 3 ) = 1 ⇒ a chia hết cho 5
Vì a + b chia hết cho 5 ; a chia hết cho 5 ⇒ b chia hết cho 5
Vậy a , b , c chia hết cho 5 . ( đpcm )
Tìm hệ số a,b,c biết
a, −3x2(2ax2−bx+c)=6x5+9x4−3c2∀x−3x2(2ax2−bx+c)=6x5+9x4−3c2∀x
b,(x2+cx+2)(a+b)=x3+x2−2∀x(x2+cx+2)(a+b)=x3+x2−2∀x
c,(ax2+bx+c)+(x+3)=x2+2x−3x∀x(ax2+bx+c)+(x+3)=x2+2x−3x∀x
Help me!!
bạn ghi lại đề đi mình chả hiểu cái mô tê gì cả
Xác định hệ số a,b để
a) Đa thức 12x3 - 7x2 + a + b chia hết cho đa thức 3x2 + 2x - 1.
Để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1, ta cần thực hiện phép chia đa thức.
4x - 3
_______________________
3x^2 + 2x - 1 | 12x^3 - 7x^2 + a + b
Để đa thức chia hết cho đa thức 3x^2 + 2x - 1, phần dư phải bằng 0. Vì vậy, ta có:
(12x^3 - 7x^2 + a + b) = (3x^2 + 2x - 1)(4x - 3)
Mở ngoặc, ta có:
12x^3 - 7x^2 + a + b = 12x^3 - 9x^2 + 8x^2 - 6x - 4x + 3
So sánh các hệ số tương ứng, ta có:
-7x^2 + a + b = -9x^2 + 8x^2 - 6x - 4x + 3
Từ đó, ta có hệ phương trình:
-7 = -9 + 8 => 8 = 9 - 7 => 8 = 2
a = -6
b = -4
Vậy, hệ số a = -6 và b = -4 để đa thức 12x^3 - 7x^2 + a + b chia hết cho đa thức 3x^2 + 2x - 1.