Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Big City Boy
Xem chi tiết
Nguyễn Lê Phước Thịnh
9 tháng 2 2021 lúc 12:59

Ta có: a+b+c=0

\(\Leftrightarrow\left(a+b+c\right)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2\left(ab+bc+ac\right)=0\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=0-1=-1\)

hay \(ab+bc+ac=-\dfrac{1}{2}\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2ab^2c+2abc^2+2a^2bc=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2+2abc\left(b+c+a\right)=\dfrac{1}{4}\)

\(\Leftrightarrow a^2b^2+b^2c^2+a^2c^2=\dfrac{1}{4}\)

Ta có: \(M=a^4+b^4+c^4\)

\(\Leftrightarrow M=a^4+b^4+c^4+2a^2b^2+2a^2c^2+2b^2c^2-2a^2b^2-2a^2c^2-2b^2c^2\)

\(\Leftrightarrow M=\left(a^2+b^2+c^2\right)^2-2\left(a^2b^2+a^2c^2+b^2c^2\right)\)

\(\Leftrightarrow M=1^2-2\cdot\dfrac{1}{4}=1-\dfrac{1}{2}=\dfrac{1}{2}\)

Vậy: \(M=\dfrac{1}{2}\)

Nguyễn Ngọc Lộc
9 tháng 2 2021 lúc 12:57

Ta có : \(a+b+c=0\)

\(\Rightarrow\left(a+b+c\right)^2=0\)

\(\Rightarrow a^2+b^2+c^2=-2\left(ab+bc+ac\right)=1\) ( * )

\(\Rightarrow ab+bc+ac=-\dfrac{1}{2}\)

Lại có : \(\left(a^2+b^2+c^2\right)^2=4\left(ab+bc+ca\right)^2\) ( suy ra từ * )

\(\Rightarrow a^4+b^4+c^4=2\left(-\dfrac{1}{2}\right)^2=\dfrac{1}{2}\)

Vậy ...

Tô Quang Hưng
Xem chi tiết
Anh Quốc
Xem chi tiết
Minh Triều
15 tháng 7 2015 lúc 12:57

ta có:

(a+b+c)2=a2+b2+c2+2ab+2bc+2ac

<=>(a+b+c)2=a2+b2+c2+2.(ab+bc+ac)

=>02     =       1      +2.(ab+bc+ac)

=>ab+bc+ac = -1/2

(ab+bc+ac)2=a2b2+a2c2+b2c2+ab2c+a2bc+abc2

<=>(ab+bc+ac)2=a2b2+a2c2+b2c2+abc.(a+b+c)

=> (-1/2)2=a2b2+a2c2+b2c2+abc.0

=>a2b2+a2c2+b2c2=1/4

suy ra:

(a2+b2+c2)2=a4+b4+c4+a2b2+a2c2+b2c2

=>12=a4+b4+c4+1/4

=>a4+b4+c4=1-1/4=3/4

Nguyen Sy Duy Manh
31 tháng 8 2017 lúc 15:22

3/4 bạn nhé

3/4 NHA BN

©ⓢ丶κεη春╰‿╯
Xem chi tiết
©ⓢ丶κεη春╰‿╯
11 tháng 2 2018 lúc 8:19

ta có:

(a+b+c)^2=a^2+b^2+c^2+2ab+2bc+2ac

<=>(a+b+c)^2=a^2+b^2+c^2+2.(ab+bc+ac)

=>0^2      =       1      +2.(ab+bc+ac)

=>ab+bc+ac = -1/2 (ab+bc+ac)2=a2b 2+a2c 2+b2c 2+ab2c+a2bc+abc2

<=>(ab+bc+ac)2=a2b 2+a2c 2+b2c 2+abc.(a+b+c)

=> (-1/2)2=a2b 2+a2c 2+b2c 2+abc.0 =>a2b 2+a2c 2+b2c 2=1/4

suy ra:

(a2+b2+c2 ) 2=a4+b4+c4+a2b 2+a2c 2+b2c 2

=>12=a4+b4+c4+1/4

=>a4+b4+c4=1-1/4=3/4

:A

lương hoàng châu
Xem chi tiết
pham hong thai
27 tháng 3 2016 lúc 13:41

mình mới học lớp 6 thôi

Vũ
Xem chi tiết
do trang
Xem chi tiết
Lê Đức Anh
Xem chi tiết
Bui Huyen
14 tháng 3 2019 lúc 21:38

ta có \(a^2,b^2,c^2\ge0\)

mà \(a^2+b^2+c^2=0\Rightarrow a=b=c=0\Rightarrow a+b+c=0\)

Điều này trái với GT a+b+c=6 \(\Rightarrow\)Đề sai 

còn a+b+c=0 và a^2+b^2+c^2=6 thì bài này có nhiều trên mạng lắm search ik 

Lê Đức Anh
14 tháng 3 2019 lúc 21:45

Thank you

Lê Nhật Khôi
14 tháng 3 2019 lúc 22:10

Ta có:

\(a+b+c=6\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2ac+2bc=36\)

\(\Leftrightarrow2\left(ab+bc+ac\right)=36\)

\(\Leftrightarrow ab+bc+ac=18\)

\(\Leftrightarrow\left(ab+bc+ac\right)^2=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2+2abc\left(a+b+c\right)=324\)

\(\Leftrightarrow\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2=324\)

Có: \(a^2+b^2+c^2=0\)

\(\Leftrightarrow\left(a^2+b^2+c^2\right)^2=0\)

\(\Leftrightarrow a^4+b^4+c^4+2\left[\left(ab\right)^2+\left(bc\right)^2+\left(ac\right)^2\right]=0\)

\(\Leftrightarrow P=a^4+b^4+c^4=-648\)

Như thế có thể kết luận đề sai 

Do tất cả đề lớn hơn bằng 0

Mình trình bày cách giải ra đề lần sau đề đúng để bn có hướng làm 

Đặng Minh Trí
Xem chi tiết
Gia Huy
5 tháng 7 2023 lúc 14:09

Theo đề có \(a+b+c=0 \Rightarrow (a+b+c)^2=0\)

\(\Leftrightarrow a^2+b^2+c^2+2ab+2bc+2ca=0\)

\(\Rightarrow ab+bc+ca=\frac{0-2}{2} = -1\) (Vì \(a^2+b^2+c^2=2\))

\(\Rightarrow (ab+bc+ca)^2=1 \)

\(\Leftrightarrow a^2b^2+b^2c^2+c^2a^2+2ab^2c+2bc^2a+2ca^2b=1\)

\(\Rightarrow a^2b^2+b^2c^2+c^2a^2 = 1\) (vì \(a+b+c=0\))

Mặt khác từ `a^2+b^2+c^2=2`

`\Rightarrow(a^2+b^2+c^2)^2=2^2`

`\Rightarrowa^4+b^4+c^4+2(a^2b^2+b^2c^2+c^2a^2)=4`

`\Rightarrowa^4+b^4+c^4+2.1=4`

`\Rightarrowa^4+b^4+c^4=4-2=2`