Tìm x,y biết 4x=7y và x2+y2=260
tìm x,y biết 4x=7y và x^2+y^2=260
Từ 4x = 7y => \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}\)
Đặt \(\frac{x}{\frac{1}{4}}=\frac{y}{\frac{1}{7}}=k\Rightarrow\hept{\begin{cases}x=\frac{1}{4}k\\y=\frac{1}{7}k\end{cases}}\)
Khi đó : x2 + y2 = 260
<=> ( 1/4k )2 + ( 1/7k )2 = 260
<=> 1/16k2 + 1/49k2 = 260
<=> k2( 1/16 + 1/49 ) = 260
<=> k2.65/784 = 260
<=> k2 = 3136
<=> k = ±56
Với k = 56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot56=14\\y=\frac{1}{7}\cdot56=8\end{cases}}\)
Với k = -56 => \(\hept{\begin{cases}x=\frac{1}{4}\cdot\left(-56\right)=-14\\y=\frac{1}{7}\cdot\left(-56\right)=-8\end{cases}}\)
Bài 3* : Tính giá trị các biểu thức sau:
a) 3x4 + 5x2y2 + 2y4 + y2 biết rằng x2 + y2 = 1
b) 7x - 7y + 4ax - 4ay - 5 biết x - y = 0
c) x3 + xy2 - x2y - y3 + 3 biết x - y = 0
d) x2 + 2xy + y2 - 4x - 4y + 1 biết rằng x + y = 3
a: \(=3x^4+3x^2y^2+2x^2y^2+2y^4+y^2\)
\(=\left(x^2+y^2\right)\left(3x^2+2y^2\right)+y^2\)
\(=3x^2+3y^2=3\)
b: \(=7\left(x-y\right)+4a\left(x-y\right)-5=-5\)
c: \(=\left(x-y\right)\left(x^2+xy+y^2\right)+xy\left(y-x\right)+3=3\)
d: \(=\left(x+y\right)^2-4\left(x+y\right)+1\)
=9-12+1
=-2
Tìm x, y, z biết: 5x = 7y = 3z và x2 + y2 - z2 = 585
Ta has: x2+y2≥2xyx ^ 2 + y ^ 2 \ ge2xyx2+y2≥2 x y
⇔2(x2+y2)≥(x+y)2\ Leftrightarrow2 \ left (x ^ 2 + y ^ 2 \ right) \ ge \ left (x + y \ right) ^ 2⇔2( x2+y2)≥( x+y )2
⇔x2+y2≥(x+y)22\ Leftrightarrow x ^ 2 + y ^ 2 \ ge \ frac {\ left (x + y \ right) ^ 2} {2}⇔x2+y2≥2( x + y )2Các bác sĩ cho biết thêm:
Áp dụng vào bài toán có:
P≤x+y(x+y)22+y+z(y+z)22+z+x(z+x)22P \ le \ frac {x + y} {\ frac {\ left (x + y \ right) ^ 2} {2}} + \ frac {y + z} {\ frac {\ left (y + z \ right ) ^ 2} {2}} + \ frac {z + x} {\ frac {\ left (z + x \ right) ^ 2} {2}}P≤2( x + y )2Các bác sĩ cho biết thêm:x + yCác bác sĩ cho biết thêm:+2( y + z )2Các bác sĩ cho biết thêm:y + zCác bác sĩ cho biết thêm:+2( z + x )2Các bác sĩ cho biết thêm:z + xCác bác sĩ cho biết thêm: =2x+y+2y+z+2z+x=12(4x+y+4y+z+4z+x)= \ frac {2} {x + y} + \ frac {2} {y + z} + \ frac {2} {z + x} = \ frac {1} {2} \ left (\ frac {4} {x + y} + \ frac {4} {y + z} + \ frac {4} {z + x} \ right)=x + y2Các bác sĩ cho biết thêm:+y + z2Các bác sĩ cho biết thêm:+z + x2Các bác sĩ cho biết thêm:=21Các bác sĩ cho biết thêm:(x + y4Các bác sĩ cho biết thêm:+y + z4Các bác sĩ cho biết thêm:+z + x4Các bác sĩ cho biết thêm:)
Áp dụng BĐT Svacxo ta có:
4x+y≤1x+1y\ frac {4} {x + y} \ le \ frac {1} {x} + \ frac {1} {y}x + y4Các bác sĩ cho biết thêm:≤x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:, 4y+z≤1y+1z\ frac {4} {y + z} \ le \ frac {1} {y} + \ frac {1} {z}y + z4Các bác sĩ cho biết thêm:≤y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:, 4z+x≤1z+1x\ frac {4} {z + x} \ le \ frac {1} {z} + \ frac {1} {x}z + x4Các bác sĩ cho biết thêm:≤z1Các bác sĩ cho biết thêm:+x1Các bác sĩ cho biết thêm:
Do đó: P≤12[2.(1x+1y+1z)]=2016P \ le \ frac {1} {2} \ left [2. \ left (\ frac {1} {x} + \ frac {1} {y} + \ frac {1} {z} \ right) \ right ] = 2016P≤21Các bác sĩ cho biết thêm:[ 2 .(x1Các bác sĩ cho biết thêm:+y1Các bác sĩ cho biết thêm:+z1Các bác sĩ cho biết thêm:) ]=2 0 1 6
Dấu "=" ⇔x=y=z=1672\ Leftrightarrow x = y = z = \ frac {1} {672}⇔x=y=z=6 7 21Các bác sĩ cho biết thêm:
P / s: Dấu "=" không chắc lắm :))
Học tốt đêý nhá
ta có 5x=7y=3z= \(\frac{x}{5}=\frac{y}{7}=\frac{z}{3}\)=> \(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}\)
ADTC dãy tỉ số bằng nhau ta có:
\(\frac{x^2}{25}=\frac{y^2}{49}=\frac{z^2}{9}=\frac{x^2+y^2-z^2}{25+49-9}=\frac{585}{65}=9\)
Suy ra:
\(\frac{x^2}{25}=9\Rightarrow x^2=25.9\Rightarrow x^2=225\Rightarrow x^2=15^2\Rightarrow x=15\)
\(\frac{y^2}{49}=9\Rightarrow y^2=9.49\Rightarrow y^2=441\Rightarrow y^2=21^2\Rightarrow y=21\)
\(\frac{z^2}{9}=9\Rightarrow z^2=9.9\Rightarrow z^2=81\Rightarrow z^2=9^2\Rightarrow z=9\)
Vậy x = 15;y=21;z=9
tìm x,y biêt 4x = 7y và x2 + y2 = 260
Ta có : \(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\Leftrightarrow\frac{x^2}{49}=\frac{y^2}{16}\) và \(x^2+y^2=260\)
Áp dụng t/c của dãy tỉ số = nhau, ta có :
\(\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
Khi đó : \(\frac{x^2}{49}=4\Rightarrow x=+-14\)
\(\frac{y^2}{16}=4\Rightarrow y=+-8\)
Vậy ___________________________
bài 1 : tìm x ; y biết 4x=7y và x^2+y^2=260
bài 2 tìm x;y;z biết
x/y/z=3:5:(-2)và 5x -y+3z=-16
bài 3 tìm x;y;z biết x:y:z =4/5/6 và x^2-2y^2+z^2=18
bài 2 :
ta có x:y:z=3:5:(-2)
=>x/3=y/5=z/-2
=>5x/15=y/5=3z/-6
áp dụng tc dãy ... ta có :
5x/15=y/5=3z/-6=5x-y+3z/15-5+(-6)=-16/4=-4
=>x/3=-=>x=-12
=>y/5=-4=>y=-20
=>z/-2=-4=>z=8
Tìm x,y biết:
a. x/2=y/3 và 5x-3y=1
b.x/3=y/4 va xy= 108
c.4x=7y và x2+y2=260
cho 4x=7y và x^2 + y^2=260. tính x+y
\(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
\(\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=196\\y^2=64\end{cases}}\)
Với x=-14 thì y=-8\(\Rightarrow x+y=\left(-14\right)+\left(-8\right)=-22\)
Với x=14 thì y=8\(\Rightarrow x+y=14+8=22\)
4x=7y và x^2+y^2=260
Ta có:4x=7y
\(\Rightarrow\)\(\frac{x}{7}\)=\(\frac{y}{4}\)
\(\Rightarrow\)\(\frac{x^2}{49}\)=\(\frac{y^2}{16}\)
AD t/c dãy các tỉ số bằng nhau,ta có
\(\frac{x^2}{49}\)=\(\frac{y^2}{16}\)=\(\frac{x^2+y^2}{49+16}\)=\(\frac{260}{65}\)=4
\(\Rightarrow\)\(x^2\)=4.49=196\(\Rightarrow\)x=\(\pm\)14
\(\Rightarrow\)\(y^2\)=4.16=64\(\Rightarrow\)y=\(\pm\)8
\(4x=7y\Rightarrow\frac{x}{7}=\frac{y}{4}\)
Áp dụng tính chất dãy tỉ số bằng nhau ta có:
\(\frac{x}{7}=\frac{y}{4}\Rightarrow\frac{x^2}{49}=\frac{y^2}{16}=\frac{x^2+y^2}{49+16}=\frac{260}{65}=4\)
\(\Rightarrow\hept{\begin{cases}x^2=196\\y^2=64\end{cases}}\)
Với x=14 thì y=8
Với x=-14 thì y=-8
tìm 2 số x,y biết
a) \(\frac{x}{2}=\frac{y}{4}\)= x2 y2 = 2
b) 4x = 7y và x2+y2 + 260
a)x=\(\frac{1}{5}\)
y=\(\frac{2}{5}\)
b)x=28
y=16