Những câu hỏi liên quan
yl
Xem chi tiết
Trần Thùy Dương
26 tháng 6 2018 lúc 23:00

b)  \(\left(a+b+c\right)^3=a^3+b^3+c^3+3\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Biến đổi VT ta có :

+) \(a^3+b^3+c^3=ab+bc+ca\)

\(\Leftrightarrow3a^3+3b^3+3c^3=3ab+3bc+3ca\)

\(\Rightarrow\left(a-b\right)^3+\left(b-c\right)^3+\left(c-a\right)^3=0\)

\(\Rightarrow a=b=c\)

< => VT = VP 

=> đpcm

Dương Lam Hàng
26 tháng 6 2018 lúc 16:13

\(VP=\left(a+b\right)^3-3ab\left(a+b\right)=a^3+3a^2b+3ab^2+b^3-3a^2b-3ab^2\)

                                                              \(=a^3+b^3=VT\)

Zek Tim
Xem chi tiết
Đào Trọng Chân
8 tháng 10 2017 lúc 20:01

Ghi đúng đề không zạ

Biến đổi vế trái thử nhé:

VT = \(\left(a-b\right)\left(a^2+ab+b^2\right)-3ab\left(a-b\right)\)

\(\left(a-b\right)\left(a^2+ab+b^2-3ab\right)\)

=\(\left(a-b\right)\left(a^2-2ab +b^2\right)\)

=\(\left(a-b\right)\left(a-b\right)^2\)

=\(\left(a-b\right)^3\)\(\ne\)VP

YA Mike
Xem chi tiết
Mỹ Duyên
25 tháng 5 2017 lúc 21:34

Sai đề chăng?

Lê Tài Bảo Châu
Xem chi tiết
๖ۣۜRᶤℵ﹏❖(๖ۣۜBảo)
22 tháng 12 2019 lúc 22:28

 Châu ơi!đăng làm j z

Khách vãng lai đã xóa
Vu Ngoc Hong Chau
Xem chi tiết
Nguyễn Thiều Công Thành
Xem chi tiết
Phạm Thùy Linh
Xem chi tiết
Trần Việt Linh
21 tháng 10 2016 lúc 23:05

a) Biến đổi vế phải ta có:

\(\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3ab\left(a+b\right)-3ab\left(a+b\right)=a^3+b^3=VT\)

Vậy đẳng thức trên đc chứng minh

b) Sai đề sửa lại

\(a^3+b^3+c^3-3abc=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Biến đổi vế trái ta có:

\(a^3+b^3+c^3-3abc\)

\(=\left(a^3+b^3\right)+c^3-3abc\)

\(=\left(a+b\right)^3-3ab\left(a+b\right)-3abc+c^3\)

\(=\left[\left(a+b\right)^3+c^3\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-c\left(a+b\right)+c^2\right]-3ab\left(a+b+c\right)\)

\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2-3ab\right)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-ac-bc\right)=VP\)

Vậy đẳng thức trên đc chứng minh

Dennis
30 tháng 1 2017 lúc 9:57

a) Biến đổi vế phải ta được :

(a + b)3 - 3ab(a + b)

= a3 + 3a2b + 3ab2 + b3 - 3ab(a + b)

= a3 + b3 + ( 3a2b + 3ab2 ) - 3ab( a + b)

= a3 + b3 + 3ab( a+ b) - 3ab( a + b)

= a3+ b3 = VT

=> a3 + b3 = ( a+b)3 - 3ab( a + b)

Hoàng Tử Tuấn Minh
Xem chi tiết
Khôi Bùi
6 tháng 9 2018 lúc 20:20

a ) \(VP=\left(a+b\right)^3-3ab\left(a+b\right)\)

\(=a^3+b^3+3a^2b+3b^2a-3a^2b-3b^2a\)

\(=a^3+b^3=VT\left(đpcm\right)\)

b ) \(VP=\left(a-b\right)^3+3ab\left(a-b\right)\)

\(=a^3-b^3-3a^2b+3b^2a+3a^2b-3b^2a\)

\(=a^3-b^3=VT\left(đpcm\right)\)

Anh Xuân
Xem chi tiết
Aki Tsuki
12 tháng 7 2017 lúc 12:09

\(VT:\)\(\left(a-b\right)^3-a^3+b^3=a^3-3a^2b+3ab^2-b^3-a^3+b^3\)

\(=-3a^2b+3ab^2=-3ab\left(a-b\right)=VP\) (đpcm)