Tính GTNN :
A= \(2+\sqrt{x^2}-2x+8\)
Tính GTNN:
A= 2+ \(\sqrt{x^2-2x+8}\)
Ta có : \(x^2-2x+8=\left(x^2-2x+1\right)+7=\left(x-1\right)^2+7\ge7\)
\(\Rightarrow\sqrt{x^2-2x+8}\ge\sqrt{7}\)\(\Rightarrow2+\sqrt{x^2-2x+8}\ge2+\sqrt{7}\)
\(\Rightarrow A\ge2+\sqrt{7}\). Dấu "=" xảy ra khi x = 1
Vậy Min A = \(2+\sqrt{7}\), khi x = 1
ta có \(\sqrt{x^2-2x+8}=\sqrt{\left(x-1\right)^2+7}\ge\sqrt{7}\)
suy ra \(2+\sqrt{x^2-2x+8}\ge2+\sqrt{7}\)
dấu = xảy ra khi và chỉ khi x-1 = 0 ---> x=1
Tìm GTNN của A=\(\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}\)
Cho A = \(\dfrac{\sqrt{x}}{\sqrt{x}+2}+\dfrac{\sqrt{x}+2}{\sqrt{x}-2}+\dfrac{2x+8}{2x-4}\) và B = \(\dfrac{2}{\sqrt{x}-6}\) với \(x\ge0;x\ne4;x\ne36\)
a) Rút gọn các biểu thức A
b) Tìm GTNN của biểu thức P = A : B
Bạn xem lại xem đã biết biểu thức đúng chưa vậy?
tìm GTNN của biểu thức \(A=\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}\)
ĐKXĐ ....\(-1\le x\le2\)
\(A^2=.....=\left(\sqrt{\left(4-x\right)\left(x +1\right)}-\sqrt{\left(2-x\right)\left(x+2\right)}\right)^2+2\)
\(\Rightarrow A^2\ge2\)(1)
Xét hiệu \(\left(-x^2+2x+8\right)-\left(-x^2+x+2\right)=x+6>0\)(Vì \(-1\le x\le2\))
\(\Rightarrow A>0\)(2)
Từ (1) và (2) ta có: \(A\ge\sqrt{2}\)
Dấu = xảy ra khi......x=0(TM)
Vậy minA=\(\sqrt{2}\)khi \(x=0\)
Tìm GTNN của bt: A= \(\sqrt{-x^2+2x+8}-\sqrt{-x^2+x+2}\)
giúp mình vs ^^
A=\(\left[\dfrac{x^2+2}{2x^2+8}-\dfrac{2x^2}{8-4x+2x^2-x^3}\right].\left(1-\dfrac{1}{x}-\dfrac{x}{x^2}\right)\)
a ) Tìm điều kiện xác định
b ) Rút gọn A
c) Tìm x để A=2
d) Tính A khi x =\(\sqrt{\sqrt{4-2\sqrt{3}}}\)
Tìm GTNN của biểu thức \(A=\frac{8\sqrt{x}-2}{2x+1}+\frac{18\sqrt{x}-6}{3x+1}\)
cho x > \(\frac{1}{4}\)tìm GTNN của biểu thức: A= \(\frac{2x-\sqrt{x}+8}{2\sqrt{x}-1}\)
1. Tim GTNN cua bieu thuc:
\(A=\dfrac{1}{2}\sqrt{x^2}+\sqrt{x^2-2x+1}\)
2. Rut gon bieu thuc:
a) \(A=\sqrt{29-4\sqrt{7}}+\sqrt{23+8\sqrt{7}}\)
b)\(B=\sqrt{x+2\sqrt{x-1}}+\sqrt{x-2\sqrt{x-1}},voix>=2\)
Bài 2:
a: \(A=2\sqrt{7}-1+\left(\sqrt{7}+4\right)\)
\(=2\sqrt{7}-1+\sqrt{7}+4=3\sqrt{7}+3\)
b: \(B=\sqrt{x-1+2\sqrt{x-1}+1}+\sqrt{x-1-2\sqrt{x-1}+1}\)
\(=\sqrt{x-1}+1+1-\sqrt{x-1}=2\)