phân tích đa thức thành nhân tử : (X+2)^3 + 8X^3 = 0
có cách giải nha
1) Phân tích đa thức thành nhân tử ( = cách nhẩm nghiệm và hệ số bất định)
a) x^4+6x^3+11x^2+6x+1
b)x^4+7x^3+14x^2+14x+4
c)x^4-1ox^3-15x^2+20x+4
2)phân tích đa thức thành nhân tử( = cách hệ số bất định)
a) x^4-8x^3+11x^2+8x+12
b) x^4+x^2+1
c)x^4+4
Phân tích thành đa thức thành nhân tử
x^3 + 8x^2 + 17x + 10
( x^2 + x + 1)( x^2 + x + 2 ) -12
x^4 - 6x^3 + 11x^2 - 6x + 1
giải chi tiết giùm mình nha
\(x^3+8x^2+17x+10\)
\(=x^3+2x^2+x^2+5x^2+10x+5x+2x+10\)
\(=\left(x^3+x^2\right)+\left(2x^2+2x\right)+\left(5x^2+5x\right)+\left(10x+10\right)\)
\(=x^2\left(x+1\right)+2x\left(x+1\right)+5x\left(x+1\right)+10\left(x+1\right)\)
\(=\left(x+1\right)\left(x^2+2x+5x+10\right)\)
\(=\left(x+1\right)\left[x\left(x+2\right)+5\left(x+2\right)\right]\)
\(=\left(x+1\right)\left(x+2\right)\left(x+5\right)\)
phân tích thành đa thức nhân tử
x^3 - 2x - 4
x^5 + x^4 + 1
x^3 - x^2 - 8x + 12
giải chi tiết giùm mình nha mình like cho
phân tích đa thức thành nhân tử bằng cách nhẩm nghiệm: 2x^3 - 5x^2 + 8x - 3
\(2x^3-5x^2+8x-3\)
\(\Leftrightarrow2x^3-x^2-4x^2+2x+6x+3\)
\(\Leftrightarrow x^2\cdot\left(2x-1\right)-2x\cdot\left(2x-1\right)+3\cdot\left(2x+1\right)\)
\(\Leftrightarrow\left(2x-1\right)\cdot\left(x^2-2x+3\right)\)
\(2x^3-5x^2+8x-3\)
\(=2x^3-x^2-4x^2+2x+6x-3\)
\(=x^2\left(2x-1\right)-2x\left(2x-1\right)+3\left(2x-1\right)\)
\(=\left(2x-1\right)\left(x^2-2x+3\right)\)
phân tích đa thức thành nhân tử bằng cách nhẩm nghiệm: 2x^3 - 5x^2 + 8x - 3
phân tích đa thức thành nhân tử bằng cách nhẩm nghiệm: 2x^3 - 5x^2 + 8x - 3
= 2x^3 - 4x^2 - x^2 + 2x + 6x - 3
= 2x^2 ( x - 1/2 ) - x ( x - 1/2 ) +3 ( x - 1/2 )
= ( x - 1/2 )( 2x^2 - x + 3 )
Phân tích đa thức thành nhân tử: 8x^3(x-3)+16x^2(3-x)
\(=\left(x-3\right)\left(8x^3-16x^2\right)=8x^2\left(x-2\right)\left(x-3\right)\)
\(8x^3\left(x-3\right)+16x^2\left(3-x\right)\)
\(=8x^3\left(x-3\right)-16x^2\left(x-3\right)\)
\(=8x^2\left(x-3\right)\left(x-2\right)\)
Phân tích đa thức thành nhân tử
\(x^3-x^2-4x^2+8x-4\)
\(=x^2\left(x-1\right)-4\left(x-1\right)^2=\left(x-1\right)\left[x^2-4\left(x-1\right)\right]\\ =\left(x-1\right)\left(x^2-4x+4\right)=\left(x-1\right)\left(x-2\right)^2\)
\(x^3-x^2-4x^2+8x-4\)
\(=x^3-4x^2-4x-x^2+4x-4\)
\(=x\left(x^2-4x+4\right)-\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x^2-4x+4\right)\)
\(=\left(x-1\right)\left(x-2\right)^2\)
a) \(x^3y^3+125=\left(xy\right)^3+5^3=\left(xy+5\right)\left(x^2y^2-5xy+25\right)\)
b) \(8x^3+y^3-6xy\left(2x+y\right)=\left(8x^3+y^3\right)-6xy\left(2x+y\right)=[\left(2x\right)^3+y^3]-6xy\left(2x+y\right)\)
\(=\left(2x+y\right)\left(4x^2-2xy+y^2\right)-6xy\left(2x+y\right)=\left(2x+y\right)\left(4x^2-2xy+y^2-6xy\right)\)
\(=\left(2x+y\right)\left(4x^2-8xy+y^2\right)\)
c) \(\left(3x+2\right)^2-2\left(x-1\right)\left(3x+2\right)+\left(x-1\right)^2\)
\(=[\left(3x+2\right)-\left(x-1\right)]^2=\left(3x+2-x+1\right)^2=\left(2x+3\right)^2=\left(2x+3\right)\left(2x+3\right)\)