Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Nguyễn Khánh Ngọc
Xem chi tiết
Nguyễn Lê Phước Thịnh
28 tháng 6 2023 lúc 8:42

a: =>|5x-2|=|2x-3|

=>5x-2=2x-3 hoặc 5x-2=-2x+3

=>3x=-1 hoặc 7x=5

=>x=5/7 hoặc x=-1/3

b: =>|5x-2|-|2x+2|=3x+5

TH1 x<-1

PT sẽ là 2-5x+2x+2=3x+5

=>-3x+4=3x+5

=>-6x=1

=>x=-1/6(loại)

TH2: -1<=x<2/5

Pt sẽ là 2-5x-2x-2=3x+5

=>-7x=3x+5

=>-4x=5

=>x=-5/4(loại)

Th3: x>=2/5

PT sẽ là 5x-2-2x-2=3x+5

=>3x-4=3x+5

=>0x=9(loại)

 

Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
14 tháng 2 2018 lúc 6:54

(2x + 1)(3x – 2) = (5x – 8)(2x + 1)

⇔ (2x + 1)(3x – 2) – (5x – 8)(2x + 1) = 0

⇔ (2x + 1).[(3x – 2) – (5x – 8)] = 0

⇔ (2x + 1).(3x – 2 – 5x + 8) = 0

⇔ (2x + 1)(6 – 2x) = 0

⇔ 2x + 1 = 0 hoặc 6 – 2x = 0

   + 2x + 1 = 0 ⇔ 2x = -1 ⇔ x = -1/2.

   + 6 – 2x = 0 ⇔ 6 = 2x ⇔ x = 3.

Vậy phương trình có tập nghiệm Giải bài 51 trang 33 SGK Toán 8 Tập 2 | Giải toán lớp 8

Linh HD
Xem chi tiết
Nguyễn Duy Khang
4 tháng 2 2021 lúc 9:56

\(a,2x\left(x-5\right)+4\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(2x+4\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\2x+4=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=-4\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=-2\end{matrix}\right.\)

Vậy \(x\in\left\{5;-2\right\}\)

\(b,3x-15=2x\left(x-5\right)\\ \Leftrightarrow3\left(x-5\right)-2x\left(x-5\right)=0\\ \Leftrightarrow\left(x-5\right)\left(-2x+3\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}x-5=0\\-2x+3=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\2x=3\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=5\\x=\dfrac{3}{2}\end{matrix}\right.\)

Vậy \(x\in\left\{5;\dfrac{3}{2}\right\}\)

\(c,\left(2x+1\right)\left(3x-2\right)=\left(5x-8\right)\left(2x+1\right)\\ \Leftrightarrow\left(2x+1\right)\left(3x-2\right)-\left(5x-8\right)\left(2x+1\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(3x-2-5x+8\right)=0\\ \Leftrightarrow\left(2x+1\right)\left(-2x+6\right)=0\\ \Leftrightarrow\left[{}\begin{matrix}2x+1=0\\-2x+6=0\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}2x=-1\\2x=6\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=-\dfrac{1}{2}\\x=3\end{matrix}\right.\)

Vậy \(x\in\left\{-\dfrac{1}{2};3\right\}\)

Câu d xem lại đề

Nguyễn Thu Mến
Xem chi tiết
alibaba nguyễn
2 tháng 8 2016 lúc 19:49

PT <=> 4x^4 + 25x^2 + 1 - 20x^3 + 4x^2 - 10x = 9x^2 - 6x + 1

<=> 4x^4 - 20x^3 + 20x^2 - 4x = 0

<=> x(x - 1)(x^2 - 4x + 1) = 0

Nguyễn Thu Mến
2 tháng 8 2016 lúc 10:51

bình phương lên đc ko nhi

alibaba nguyễn
2 tháng 8 2016 lúc 10:54
Bình phương lên rồi phân tích thành nhân tử là ra thôi
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
29 tháng 5 2019 lúc 12:51

Đỗ Hoàng Tuấn
Xem chi tiết
Pham Trong Bach
Xem chi tiết
Cao Minh Tâm
21 tháng 1 2019 lúc 9:18

a) |3x| = x + 6 (1)

Ta có 3x = 3x khi x ≥ 0 và 3x = -3x khi x < 0

Vậy để giải phương trình (1) ta quy về giải hai phương trình sau:

+ ) Phương trình 3x = x + 6 với điều kiện x ≥ 0

Ta có: 3x = x + 6 ⇔ 2x = 6 ⇔ x = 3 (TMĐK)

Do đó x = 3 là nghiệm của phương trình (1).

+ ) Phương trình -3x = x + 6 với điều kiện x < 0

Ta có -3x = x + 6 ⇔ -4x + 6 ⇔ x = -3/2 (TMĐK)

Do đó x = -3/2 là nghiệm của phương trình (1).

Vậy tập nghiệm của phương trình đã cho S = {3; -3/2}

ĐKXĐ: x ≠ 0, x ≠ 2

Quy đồng mẫu hai vễ của phương trình, ta được:

Vậy tập nghiệm của phương trình là S = {-1}

c) (x + 1)(2x – 2) – 3 > –5x – (2x + 1)(3 – x)

⇔ 2x2 – 2x + 2x – 2 – 3 > –5x – (6x – 2x2 + 3 – x)

⇔ 2x2 – 5 ≥ –5x – 6x + 2x2 – 3 + x

⇔ 10x ≥ 2 ⇔ x ≥ 1/5

Tập nghiệm: S = {x | x ≥ 1/5}

Đinh Cẩm Tú
Xem chi tiết
Yeutoanhoc
27 tháng 2 2021 lúc 20:16

`(2x)/(3x^2-x+2)-(7x)/(3x^2+5x+2)=1(x ne -1,-2/3)`

Đặt `a=3x^2+2x+2(a>=5/3)`

`pt<=>(2x)/(a-3x)-(7x)/(a+3x)=1`

`=>2x(a+3x)-7x(a-3x)=a^2-9x^2`

`<=>2ax+6x^2-7ax+21x^2=a^2-9x^2`

`<=>-5ax+27x^2=a^2-9x^2`

`<=>a^2-36x^2+5ax=0`

`<=>a^2-4ax+9ax-36x^2=0`

`<=>a(a-4x)+9x(a-4x)=0`

`<=>(a-4x)(a+9x)=0`

`+)a=4x`

`=>3x^2+2x+2=4x`

`=>3x^2-2x+2=0`

`=>x^2-2/3x+2/3=0`

`=>(x-1/3)^2+5/9=0` vô lý

`+)a+9x=0`

`=>3x^2+2x+2+9x=0`

`=>3x^2+11x+2=0`

`=>x^2+11/3x+2/3=0`

`=>x=(-11+-\sqrt{97})/6`

Trương Thùy Dung
27 tháng 2 2021 lúc 20:25

ĐKXĐ: \(x\ne-1;x\ne-\dfrac{2}{3}\)

Ta có: \(\dfrac{2x}{3x^2-x+2}-\dfrac{7x}{3x^2+5x+2}=1\)(1)

\(\Leftrightarrow\dfrac{2}{3x-1+\dfrac{2}{x}}-\dfrac{7}{3x+5+\dfrac{2}{x}}=1\)

Đặt: \(3x+\dfrac{2}{x}=a\)  (x khác 0) thì pt(1) trở thành:

\(\dfrac{2}{a-1}-\dfrac{7}{a+5}=1\)

\(\Leftrightarrow\dfrac{2\left(a+5\right)-7\left(a-1\right)}{\left(a-1\right)\left(a+5\right)}=1\)

\(\Leftrightarrow2\left(a+5\right)-7\left(a-1\right)=\left(a-1\right)\left(a+5\right)\)

\(\Leftrightarrow-5a+17=a^2+4a-5\)

\(\Leftrightarrow a^2+4a+5-5-17=0\)

\(\Leftrightarrow a^2+9a-22=0\)

\(\Leftrightarrow\left(a-2\right)\left(a+11\right)=0\)

\(\Leftrightarrow\left[{}\begin{matrix}a=2\\a=-11\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}3x+\dfrac{2}{x}=2\\3x+\dfrac{2}{x}=-11\end{matrix}\right.\)

Vì \(\left\{{}\begin{matrix}3x^2+2-2x\ne0\\3x^2+11x+2\ne0\end{matrix}\right.\)

=> PT vô nghiệm 

Ủa hình như sai:vvv

 

 

Đặng Minh Anh
Xem chi tiết
Thắng Nguyễn
13 tháng 1 2017 lúc 21:48

Thấy x=0 ko là nghiệm chia 2 vế cho x ta dc

\(\left(\frac{2x^2-3x+1}{x}\right)\left(\frac{2x^2+5x+1}{x}\right)=9\)

\(\Leftrightarrow\left(2x-3+\frac{1}{x}\right)\left(2x+5+\frac{1}{x}\right)=9\)

Đặt \(t=2x+\frac{1}{x}\) ta có: 

\(\left(t-3\right)\left(t+5\right)=9\Rightarrow t^2+2t-15-9=0\)

\(\Rightarrow t^2+2t-24=0\Rightarrow\left(t-4\right)\left(t+6\right)=0\)

\(\Rightarrow\orbr{\begin{cases}t=4\Rightarrow2x+\frac{1}{x}=4\\t=-6\Rightarrow2x+\frac{1}{x}=-6\end{cases}}\)

\(\Rightarrow\orbr{\begin{cases}\frac{2x^2-4x+1}{x}=0\\\frac{2x^2+6x+1}{x}=0\end{cases}}\Rightarrow\orbr{\begin{cases}2x^2-4x+1=0\\2x^2+6x+1=0\end{cases}}\)

\(\orbr{\begin{cases}\Delta=\left(-4\right)^2-4\left(2\cdot1\right)=8\\\Delta=6^2-4\left(2\cdot1\right)=28\end{cases}}\)\(\Rightarrow\orbr{\begin{cases}x_{1,2}=\frac{4\pm\sqrt{8}}{4}\\x_{3,4}=\frac{-6\pm\sqrt{28}}{4}\end{cases}}\)