-x^2 + 2xy - 4y^2 + 2x + 10y - 8
tìm GTLN: -x^2+2xy-4y^2+2x+10y-8
\(A=-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy+4y^2-2x-10y+8\right)\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2-5\right]\)
\(=5-\left(x-y-1\right)^2-3\left(y-2\right)^2\le5\)
Dấu"=" xảy ra <=> \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\) <=> \(\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy MAX \(A=5\)khi \(x=3;\)\(y=2\)
tìm gtln của -x^2+2xy-4y^2+2x+10y-8
Tìm gtnn của mỗi biểu thức
A=5-x^2 + 2x -4y^2 -4y
B=-x^2 + 2xy - 4y^2 + 2x +10y -8
M = 5 - x2 + 2x - 4y2 - 4y
= (- x2 + 2x - 1) + (- 4y2 - 4y - 1) + 7
= 7 - (x - 1)2 - (2y + 1)2\(\le7\)
Dấu "=" xảy ra khi x = 1 và y = - 0,5
(^~^)
M = - x2 + 2xy - 4y2 + 2x + 10y - 8
- M = x2 - 2xy + 4y2 - 2x - 10y + 8
= (y2 + 1 + x2 + 2y - 2xy - 2x) + (3y^2 - 12y + 12) - 5
\(=\left(y+1-x\right)^2+3\left(y-2\right)^2-5\ge-5\)
\(\Rightarrow M\le5\)
Dấu "=" xảy ra khi y = 2 và x = 3.
GTNN M=x^2+4y^2-2x-2xy-10y+8
ta có:
M=x^2+4y^2-2x-2xy-10y+8
=(x^2-2xy+y^2)-(2x-2y)+3y^2-12y+8
=(x-y)^2-2(x-y)+1+3(y^2-4y+4)-(13-8)
=(x-y-1)^2+3(y-2)^2-5
vì (x-y-1)^2\(\ge0\)với mọi x,y
3(y-2)^2\(\ge0\)với mọi y
suy ra (x-y-1)^2+3(y-2)^2-5\(\ge-5\)với mọi x,y
dấu "=" xảy ra\(\Leftrightarrow\) \(\left\{{}\begin{matrix}x-y-1=0\\y-2=0\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y=3\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
Vậy GTNN của M là -5 khi \(\left\{{}\begin{matrix}x=4\\y=3\end{matrix}\right.\)
tìm GTLN: -x^2+2xy-4y^2+2x+10y-8
\(-x^2+2xy-4y^2+2x+10y-8\)
\(=-\left(x^2-2xy+y^2\right)+2\left(x-y\right)+12y-8-3y^2\)
\(=-\left(x-y\right)^2+2\left(x-y\right)-3\left(y^2-4y+4\right)+4\)
\(=-\left[\left(x-y\right)^2-2\left(x-y\right)+1\right]-3\left(y-2\right)^2+5\)
\(=-\left(x-y-1\right)^2-3\left(y-2\right)^2+5\)
\(=-\left[\left(x-y-1\right)^2+3\left(y-2\right)^2\right]+5\le5\forall x;y\)
Dấu " = " xảy ra
\(\Leftrightarrow\left\{{}\begin{matrix}\left(x-y-1\right)^2=0\\3\left(y-2\right)^2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x-y-1=0\\\left(y-2\right)^2=0\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x-y=1\\y-2=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=y+1\\y=2\end{matrix}\right.\)
\(\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Vậy GTLN của biểu thức trên là : \(5\Leftrightarrow\left\{{}\begin{matrix}x=3\\y=2\end{matrix}\right.\)
Tìm \(x,\) \(y\) sao cho:
\(B=-x^2+2xy-4y^2+2x+10y-8\) có \(GTLN\)
Tìm Max : B= -x^2 + 2xy - 4y^2 + 2x + 10y - 8
B=-x^2+2xy-4y^2+2x+10y-8 co gia tri lon nhat
\(-x^2+2xy-4y^2+2x+10y-8=-x^2+2x\left(y+1\right)-\left(y+1\right)^2-3y^2+12y-7\)
\(=-\left(x-y-1\right)^2-\left(y-2\right)^2+5\le5\)
Đẳng thức xảy ra khi \(\hept{\begin{cases}x-y-1=0\\y-2=0\end{cases}}\) \(\Leftrightarrow\hept{\begin{cases}x=3\\y=2\end{cases}}\)
Vậy B đạt giá trị lớn nhất bằng 5 tại (x;y) = (3;2)
tìm GTLN:
-x^2+2xy-4y^2+2x+10y-8