Phân tích đa thức thành nhân tử : \(x^2+4x+y-9y^2\)
Phân tích đa thức thành nhân tử :\(x^2+4x+y-9y^2\)
x2 + 4x + y - 9y2
<=> x(x + 4) + y(1 + 9y)
<=> (x + y)(x + 4 + 1 + 9y)
<=> (x + y)(x + 9y + 5)
bí rồi
Phân tích đa thức sau thành nhân tử: a) x^2-4x+4-y^2 b) x^2+6x-4y^2+9 c) x^2-6xy+9y^2-36
a) = (x - 2)2 - y2
= (x - 2 - y)(x + 2 + y)
b) = (x^2 + 6x + 9) - (2y)^2
= (x + 3)2 - (2y)2
= (x - 2y + 3)(x + 2y + 3)
c) = (x - 3y)2 - 62
= (x - 3y - 6)(x - 3y + 6)
Phân tích đa thức thành nhân tử
x^2-2xy+y^2-2x+2y
x^2-4x+4-x^2y+2xy
ax^2-3axy-x^2+6xy-9y^2
2a^2x-5a^2y-4x^2+30xy-25y^2
a) Ta có: \(x^2-2xy+y^2-2x+2y\)
\(=\left(x-y\right)^2-2\left(x-y\right)\)
\(=\left(x-y\right)\left(x-y-2\right)\)
b) Ta có: \(x^2-4x+4-x^2y+2xy\)
\(=\left(x-2\right)^2-xy\left(x-2\right)\)
\(=\left(x-2\right)\left(x-2-xy\right)\)
c) Ta có: \(ax^2-3axy-x^2+6xy-9y^2\)
\(=ax\left(x-3y\right)-\left(x^2-6xy+9y^2\right)\)
\(=ax\left(x-3y\right)-\left(x-3y\right)^2\)
\(=\left(x-3y\right)\left(ax-x+3y\right)\)
d) Ta có: \(2a^2x-5a^2y-4x^2+30xy-25y^2\)
\(=a^2\left(2x-5y\right)-\left(4x^2-30xy+25y^2\right)\)
\(=a^2\left(2x-5y\right)-\left(2x-5y\right)^2\)
\(=\left(2x-5y\right)\left(a^2-2x+5y\right)\)
Phân tích đa thức 4x^2 - 9y^2 + 4x - 6y thành nhân tử ta được
4x2 - 9y2 + 4x - 6y
= (2x - 3y)(2x + 3y) + 2(2x - 3y)
= (2x - 3y)(2x + 3y + 2)
\(4x^2-9y^2+4x-6y\)
\(=\left(4x^2+4x+1\right)-\left(9y^2+6y+1\right)\)
\(=\left(2x+1\right)^2-\left(3y+1\right)^2\)
\(=\left(2x+1-3y-1\right)\left(2x+1+3y+1\right)\)
\(=\left(2x-3y\right)\left(2x+3y+2\right)\)
Phân tích đa thức thành nhân tử
1)4x^2+2x-36x-9y+81y^2
2)x^4-5x^2+4
2) \(x^4-5x^2+4\)
\(=x^4-x^2-4x^2+4\)
\(=x^2\left(x^2-1\right)-4\left(x^2-1\right)\)
\(=\left(x^2-1\right)\left(x^2-4\right)\)
\(=\left(x-1\right)\left(x+1\right)\left(x-2\right)\left(x+2\right)\)
Phân tích đa thức thành nhân tử a)ab+a+b+1 b)x^2-x^2y-4x+4y c)4x^2-12xy+3x-9y
a: \(ab+a+b+1\)
\(=a\left(b+1\right)+\left(b+1\right)\)
\(=\left(b+1\right)\left(a+1\right)\)
c: \(4x^2-12xy+3x-9y\)
\(=4x\left(x-3y\right)+3\left(x-3y\right)\)
\(=\left(x-3y\right)\left(4x+3\right)\)
4x^2-16xy -9y^2(phân tích đa thức thành nhân tử)
=4x^2+2xy-18xy-9y^2
=2x(2x+y)-2y(2x+y)
=2(x-y)(2x+y)
4x^2+2xy-18xy-9y^2
=2x(2x+y)-9y(2x+y)
=(2x-9y)(2x+y)
Sorry bài trên mình làm sai
Phân tích đa thức thành nhân tử
a) (4x^2 - 3x - 18)^2 - (4x^2 + 3x)^2
b) 9(x + y - 1)^2 - 4(2x + 3y +1)^2
c) -4x^2 + 12xy - 9y^2 + 25
d) x^2 - 2xy + y^2 - 4m^2 + 4mn - n^2
a) Ta có: \(\left(4x^2-3x-18\right)^2-\left(4x^2+3x\right)^2\)
\(=\left(4x^2-3x-18-4x^2-3x\right)\left(4x^2-3x-18+4x^2+3x\right)\)
\(=\left(-6x-18\right)\left(8x^2-18\right)\)
\(=-6\left(x+3\right)\cdot2\left(4x^2-9\right)\)
\(=-12\left(x+3\right)\left(2x-3\right)\left(2x+3\right)\)
b) Ta có: \(9\left(x+y-1\right)^2-4\left(2x+3y+1\right)^2\)
\(=\left(3x+3y-3\right)^2-\left(4x+6y+2\right)^2\)
\(=\left(3x+3y-3-4x-6y-2\right)\left(3x+3y-3+4x+6y+2\right)\)
\(=-\left(x+3y+5\right)\left(7x+9y-1\right)\)
c) Ta có: \(-4x^2+12xy-9y^2+25\)
\(=-\left(4x^2-12xy+9y^2-25\right)\)
\(=-\left[\left(2x-3y\right)^2-25\right]\)
\(=-\left(2x-3y-5\right)\left(2x-3y+5\right)\)
d) Ta có: \(x^2-2xy+y^2-4m^2+4mn-n^2\)
\(=\left(x^2-2xy+y^2\right)-\left(4m^2-4mn+n^2\right)\)
\(=\left(x-y\right)^2-\left(2m-n\right)^2\)
\(=\left(x-y-2m+n\right)\left(x-y+2m-n\right)\)
a) (4x2-3x-18)2-(4x2+3x)2
=(4x2-3x-18-4x2-3x)(4x2-3x-18+4x2+3x)
=(-6x-18)(8x2-18)
=-48x3+108x-144x2+324
Phân tích đa thức thành nhân tử
a,4x2+4x-9y2+1
b,x2-y2+2yz-z2