Rút gọn
P = tan1.tan2.tan3...tan87.tan88.tan89
S = tan1° . tan2° . tan3°....... tan88° . tan89°
Lưu ý: \(tana=cot\left(90-a\right)\)
\(S=tan1.tan89.tan2.tan88...tan44.tan46.tan45\)
\(=tan1.cot1.tan2.cot2...tan44.cot44.tan45\)
\(=1.1.1...1.1=1\)
Baì1 tan2°×tan3°×... tan88°×tan89°
Baì2 tan2°×tan3°×... tan88°
Tính \(S=lg\tan1^0+lg\tan2^0+lg\tan3^0+...+lg\tan89^0\)
Nhận xét : \(lg\tan1^0+lg\tan89^0=lg\left(\tan1^0.\tan89^0\right)=lg1=0\)
\(lg\tan2^0+lg\tan88^0=lg\left(\tan1^0.\tan88^0\right)=lg1=0\)
...................................................................................
....................................................................................
Và \(lg\tan45^0=lg1=0\)
Suy ra \(S=lg\tan1^0+lg\tan2^0+lg\tan3^0+......+lg\tan89^0\)
\(=\left(lg\tan1^0+lg\tan89^0\right)+\left(lg\tan2^0+lg\tan88^0\right)+....+lg\tan45^0\)
Vậy \(S=lg\tan1^0+lg\tan2^0+lg\tan3^0+...+lg\tan89^0=0\)
Tính giá trị biểu thức :
\(N=lg\left(\tan1^0\right)+lg\left(\tan2^0\right)+....+lg\left(\tan88^0\right)+lg\left(\tan89^0\right)\)
\(N=lg\left(\tan1^0\right)+lg\left(\tan2^0\right)+....+lg\left(\tan88^0\right)+lg\left(\tan89^0\right)\)
\(=\left[lg\left(\tan1^0\right)+lg\left(\tan89^0\right)\right]+\left[lg\left(\tan2^0\right)+lg\left(\tan88^0\right)\right]+...+\left[lg\left(\tan44^0\right)+lg\left(\tan46^0\right)\right]+lg\left(\tan45^0\right)\)
\(=lg\left(\tan1^0.\tan89^0\right)+lg\left(\tan2^0.\tan88^0\right)+...+lg\left(\tan44^0.\tan46^0\right)+lg\left(\tan45^0\right)\)
\(=lg\left(\tan1^0.\cot1^0\right)+lg\left(\tan2^0.\cot2^0\right)+.....+lg\left(\tan44^0.\cot44^0\right)+lg\left(\tan45^0\right)\)
\(=lg1+lg1+....+lg1+lg1=0+0+....+0+0=0\)
Rút gọn: a) \(tan1^0.tan2^0.tam3^0....tan88^0.tan89^0\)
b)\(P=\frac{1}{\sqrt{2}-\sqrt{3}}-\frac{1}{\sqrt{3}-\sqrt{4}}+\frac{1}{\sqrt{4}-\sqrt{5}}-...+\frac{1}{\sqrt{2n}-\sqrt{2n+1}}\)
\(tan1^0.tan89^0.tan2^0.tan88^0...tan44^0tan46^0.tan45^0\)
\(=tan1^0.cot1^0.tan2^0.cot2^0...tan44^0.cot44^0.tan45^0\)
\(=1.1.1...1=1\)
b/ Nhân cả tử và mẫu với liên hợp của mẫu và rút gọn ta được:
\(P=-\sqrt{2}-\sqrt{3}+\sqrt{3}+\sqrt{4}-\sqrt{4}-\sqrt{5}+....-\sqrt{2n}-\sqrt{2n+1}\)
\(=-\sqrt{2}-\sqrt{2n+1}\)
Tính giá trị của biểu thức P = l o g ( t a n 1 ∘ ) + l o g ( t a n 2 ∘ ) + . . . + l o g ( t a n 89 ∘ )
A. 0
B. 2
C. 1/2
D. 1
B=\(\tan1.tan2.tan3.tan89\)
\(C=\sin^254+sin^236-3sin^2126+.......+\cos^3126+\cos^354-3\cos^254\)
\(D=sin^21+sin^22+sin^23+......+sin^289+sin^290\)
p/s: mí bạn giúp đỡ giùm....tớ mới học dạng này lên còn hơi bỡ ngỡ ....đang cần gấp lắm ag!!
câu B sửa là B=tan1.tan2.tan3.............tan89
+ tan1 = cot89
... tan 89 = cot1
=> 2B = tan1.cot1.tan2.cot2...tan89.cot89
= 1.1...1 = 1
=> B = 1/2
Tính :
a) \(A=\frac{1}{\log_2x}+\frac{1}{\log_3x}+.....+\frac{1}{\log_{2007}x}\) với \(x=2007!\)
b) \(B=lg\tan1^o+lg\tan2^o+...........lg\tan89^o\)
a) Sử dụng công thức \(\frac{1}{\log_ba}=\log_ab\), hơn nữa \(x=2007!\) nên ta có : \(A=\log_x2+\log_x3+..........\log_x2007\)
\(=\log_x\left(2.3...2007\right)\)
\(=\log_xx=1\)
b) Nhận thấy
\(lg\tan1^o+lg\tan89^o=lg\left(lg\tan1^o.lg\tan89^o\right)=lg1=0\)
Tương tự ta có :
\(lg\tan2^o+lg\tan88^o=0\)
.................
\(lg\tan44^o+lg\tan46^o=0\)
\(lg\tan45^o=lg1=0\)
Do đó :
\(B=\left(lg\tan1^o+lg\tan89^o\right)+\left(lg\tan2^o+lg\tan88^o\right)+......+lg\tan45^0=0\)
Tính a) \(A=\left(\sin1^o+\sin2^o+......+sin89^o\right)-\left(\cos1^o+\cos2^o+......+\cos89^o\right)\)
b) \(B=\left(\tan1^o.\tan2^o......\tan89^o\right)\)
c) \(C=\left(\sin^21^o+\sin^22^o+.......+\sin^289^o\right)\)
Giúp mình nhé mai mình phải nộp rồi
a)Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\(\sin1=\cos89....\sin89=\cos1\)
Vậy \(A=0\)
b) Theo định lí tỉ số lượng giác của 2 góc phụ nhau, ta có:
\(\tan1=\cot89...\tan2=\cot88...\)
\(\Rightarrow B=\tan45\cdot\tan46\cdot\cot46\cdot...\cdot\tan89\cdot\cot89\)
Mà \(\tan\lambda\cdot\cot\lambda=1\)
\(\Rightarrow B=\tan45\cdot1=1\)
c) Bạn làm tương tự dựa vào CT \(\sin^2\lambda+\cos^2\lambda=1\)