lim\(\dfrac{n^4}{\left(n+1\right)\left(2+n\right)\left(n^3+1\right)}\)
giới hạn \(lim\dfrac{1-2+4-...+\left(-2\right)^{n-1}}{1-3+9-...+\left(-3\right)^{n-1}}=\dfrac{4\left[1-\left(-2\right)^n\right]}{3\left[1-\left(-3\right)^n\right]}\) bằng?
Tìm giới hạn các dãy số sau
a) \(lim\dfrac{2^n+6^n-4^{n-1}}{3^n+6^{n+1}}\)
b) \(lim\dfrac{1+3+5+...+\left(2n+1\right)}{3n^2+4}\)
c) \(lim\dfrac{1+2+3+...+n}{n^2-3}\)
d) \(lim\left[\dfrac{1}{1.2}+\dfrac{1}{2.3}+...+\dfrac{1}{n\left(n+1\right)}\right]\)
e) \(lim\left[\dfrac{1}{1.3}+\dfrac{1}{3.5}+...+\dfrac{1}{\left(2n-1\right)\left(2n+1\right)}\right]\)
\(a=lim\dfrac{\left(\dfrac{2}{6}\right)^n+1-\dfrac{1}{4}\left(\dfrac{4}{6}\right)^n}{\left(\dfrac{3}{6}\right)^n+6}=\dfrac{1}{6}\)
\(b=\lim\dfrac{\left(n+1\right)^2}{3n^2+4}=\lim\dfrac{n^2+2n+1}{3n^2+4}=\lim\dfrac{1+\dfrac{2}{n}+\dfrac{1}{n^2}}{3+\dfrac{4}{n^2}}=\dfrac{1}{3}\)
\(c=\lim\dfrac{n\left(n+1\right)}{2\left(n^2-3\right)}=\lim\dfrac{n^2+n}{2n^2-6}=\lim\dfrac{1+\dfrac{1}{n}}{2-\dfrac{6}{n^2}}=\dfrac{1}{2}\)
\(d=\lim\left[1-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+...+\dfrac{1}{n}-\dfrac{1}{n+1}\right]=\lim\left[1-\dfrac{1}{n+1}\right]=1\)
\(e=\lim\dfrac{1}{2}\left[1-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{5}+...+\dfrac{1}{2n-1}-\dfrac{1}{2n+1}\right]\)
\(=\lim\dfrac{1}{2}\left[1-\dfrac{1}{2n+1}\right]=\dfrac{1}{2}\)
1
a,Lim\(\sqrt{1+2n-n^3}\)
b,Lim\(\sqrt{n^2+2n+3}-\sqrt[3]{n^2+n^3}\)
c,Lim\(\dfrac{\left(2\sqrt{n}+1\right)\left(\sqrt{n}+3\right)}{\left(n+1\right)\left(n+2\right)}\)
d,\(\dfrac{4^{n+1}-3\times2^n}{3^{n+2}+2^n}\)
e,\(\dfrac{7^{n+1}-5^{n+2}+3}{2\times6^{n+1}-3^n+3}\)
f,\(\dfrac{\sqrt{n^4+1}}{n}\) -\(\dfrac{\sqrt{4n^6+1}}{n}\)
\(a=\lim\sqrt{n^3}\sqrt{\dfrac{1}{n^3}+\dfrac{2}{n^2}-1}=\infty.\left(-1\right)=-\infty\)
\(b=\lim\left(\sqrt{n^2+2n+3}-n+n-\sqrt[3]{n^2+n^3}\right)\)
\(=\lim\dfrac{2n+3}{\sqrt{n^2+2n+3}+n}+\lim\dfrac{-n^2}{n^2+n\sqrt[3]{n^2+n^3}+\sqrt[3]{\left(n^2+n^3\right)^2}}\)
\(=\lim\dfrac{2+\dfrac{3}{n}}{\sqrt{1+\dfrac{2}{n}+\dfrac{3}{n^2}}+1}+\lim\dfrac{-1}{1+\sqrt[3]{\dfrac{1}{n}+1}+\sqrt[3]{\left(\dfrac{1}{n}+1\right)^2}}=\dfrac{2}{2}-\dfrac{1}{3}=\dfrac{2}{3}\)
\(c=\lim\dfrac{\left(\dfrac{2}{\sqrt{n}}+\dfrac{1}{n}\right)\left(\dfrac{1}{\sqrt{n}}+\dfrac{3}{n}\right)}{\left(1+\dfrac{1}{n}\right)\left(1+\dfrac{2}{n}\right)}=\dfrac{0.0}{1.1}=0\)
\(d=\lim\dfrac{4-3\left(\dfrac{2}{4}\right)^n}{9.\left(\dfrac{3}{4}\right)^n+\left(\dfrac{2}{4}\right)^n}=\dfrac{4}{0}=+\infty\)
\(e=\lim\dfrac{7-25\left(\dfrac{5}{7}\right)^n+3.\left(\dfrac{1}{7}\right)^n}{12.\left(\dfrac{6}{7}\right)^n-\left(\dfrac{3}{7}\right)^n+3\left(\dfrac{1}{7}\right)^n}=\dfrac{7}{0}=+\infty\)
\(f=\lim\dfrac{n^4-4n^6}{n\left(\sqrt{n^4+1}+\sqrt{4n^6+1}\right)}=\lim\dfrac{\dfrac{1}{n^2}-6}{\sqrt{\dfrac{1}{n^6}+\dfrac{1}{n^{10}}}+\sqrt{\dfrac{4}{n^4}+\dfrac{1}{n^{10}}}}=\dfrac{-6}{0}=-\infty\)
1. lim\(\dfrac{\left(n+2\right)^{50}.\left(n-3\right)^{80}}{\left(2n-1\right)^{40}.\left(3n-2\right)^{45}}\)
2. lim\(\dfrac{4^n}{2.3^n+4^n}\)
3. lim\(\dfrac{3^n-2.5^n}{7+3.5^n}\)
4. lim\(\dfrac{4^n-5^n}{2^{2n}+3.5^{2n}}\)
5. lim\(\dfrac{\left(-3\right)^n+5^n}{2.\left(-4\right)^n+5^n}\)
\(lim\dfrac{\left(n+2\right)^{50}\left(n-3\right)^{80}}{\left(2n-1\right)^{40}\left(3n-2\right)^{45}}=lim\dfrac{\left(1+\dfrac{2}{n^{50}}\right)\left(1-\dfrac{3}{n^{35}}\right)\left(n-3\right)^{45}}{\left(2-\dfrac{1}{n^{50}}\right)\left(3-\dfrac{2}{n^{45}}\right)}=+\infty\)
\(lim\dfrac{4^n}{2.3^n+4^n}=lim\dfrac{1}{2.\left(\dfrac{3}{4}\right)^n+1}=\dfrac{1}{0+1}=1\)
\(lim\dfrac{3^n-2.5^n}{7+3.5^n}=lim\dfrac{\left(\dfrac{3}{5}\right)^n-2}{\dfrac{7}{5^n}+3}=\dfrac{0-2}{0+3}=\dfrac{-2}{3}\)
\(lim\dfrac{4^n-5^n}{2^{2n}+3.5^{2n}}=lim\dfrac{\left(\dfrac{4}{25}\right)^n-\left(\dfrac{1}{5}\right)^n}{\left(\dfrac{2}{5}\right)^{2n}+3}=\dfrac{0-0}{0+3}=0\)
\(lim\dfrac{\left(-3\right)^n+5^n}{2.\left(-4\right)^n+5^n}=lim\dfrac{\left(\dfrac{-3}{5}\right)^n+1}{2.\left(-\dfrac{4}{5}\right)^n+1}=\dfrac{0+1}{0+1}=1\)
1.
Nhớ rằng \(\lim _{x\to \infty}\frac{1}{x}=0\) và \(\lim _{x\to a}\frac{f(x)}{g(x)}=\frac{\lim_{x\to a}f(x)}{\lim_{x\to a}g(x)}\) với \(g(x)\neq 0; \lim_{x\to a}g(x)\neq 0\)
Do đó:
\(\lim_{n\to \infty}\frac{(n+2)^{50}.(n-3)^{80}}{(2n-1)^{40}.(3n-2)^{45}}=\lim_{n\to \infty}\frac{n^{130}(\frac{n+2}{n})^{50}.(\frac{n-3}{n})^{80}}{n^{85}(\frac{2n-1}{n})^{40}.(\frac{3n-2}{n})^{45}}\)
\(=\lim_{n\to \infty}\frac{n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}}{(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}}\)
\(=\frac{\lim_{n\to \infty}[n^{45}(1+\frac{2}{n})^{50}(1-\frac{3}{n})^{80}]}{\lim_{n\to \infty}[(2-\frac{1}{n})^{40}.(3-\frac{2}{n})^{45}]}\)
\(=\frac{\lim_{n\to \infty}n^{45}.1^{50}.1^{80}}{2^{40}.3^{45}}=\frac{\infty}{2^{40}.3^{45}}=\infty\)
2)
\(\lim_{n\to \infty}\frac{4^n}{2.3^n+4^n}=\lim_{n\to \infty}\frac{1}{\frac{2.3^n+4^n}{4^n}}=\lim_{n\to\infty}\frac{1}{2.(\frac{3}{4})^n+1}\)
\(=\frac{1}{\lim_{n\to \infty}[2.(\frac{3}{4})^n+1]}=\frac{1}{2.0+1}=1\)
3)
\(\lim_{n\to \infty}\frac{3^n-2.5^n}{7+3.5^n}=\lim_{n\to \infty}\frac{(\frac{3}{5})^n-2}{\frac{7}{5^n}+3}\)
\(=\frac{\lim_{n\to \infty}[(\frac{3}{5})^n-2]}{\lim_{n\to \infty}[\frac{7}{5^n}+3]}=\frac{0-2}{0+3}=\frac{-2}{3}\)
Tính các giới hạn
a) \(lim\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}\)
\(lim\left(n^3+n\sqrt{n}-5\right)\)
Giúp mình với ạ
a/ \(\lim\limits\dfrac{1+\dfrac{1}{3}+\left(\dfrac{1}{3}\right)^2+...+\left(\dfrac{1}{3}\right)^n}{1+\dfrac{1}{2}+\left(\dfrac{1}{2}\right)^2+...+\left(\dfrac{1}{2}\right)^n}=\lim\limits\dfrac{\dfrac{\left(\dfrac{1}{3}\right)^{n+1}-1}{\dfrac{1}{3}-1}}{\dfrac{\left(\dfrac{1}{2}\right)^{n+1}-1}{\dfrac{1}{2}-1}}=\dfrac{\dfrac{3}{2}}{\dfrac{1}{2}}=3\)
b/ \(\lim\limits\left(n^3+n\sqrt{n}-5\right)=+\infty-5=+\infty\)
Tìm các giới hạn sau:
a)\(lim\left[n^2\left(\sqrt{n^2+2}-\sqrt{n^2+4}\right)\right]\)
b)lim( \(\dfrac{3}{n-2}-5n\))
c) lim(\(\dfrac{n-1}{\sqrt{3}-n}-\dfrac{4}{2^{-n}}\))
d) \(lim\left(\dfrac{n^2-4}{n-2}-\dfrac{3n^2+4}{n}\right)\)
e) \(lim\dfrac{\sqrt{n^2+1}-n\sqrt{5}}{\sqrt{n^2+1}+n\sqrt{5}}\)
\(a=\lim\dfrac{-2n^2}{\sqrt{n^2+2}+\sqrt{n^2+4}}=\lim\dfrac{-2n}{\sqrt{1+\dfrac{2}{n^2}}+\sqrt{1+\dfrac{4}{n^2}}}=\dfrac{-\infty}{2}=-\infty\)
\(b=\lim\dfrac{3-5n^2+10n}{n-2}=\lim\dfrac{-5n+10+\dfrac{3}{n}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(c=\lim\left(\dfrac{1-\dfrac{1}{n}}{\dfrac{\sqrt{3}}{n}-1}-4.2^n\right)=-1-\infty=-\infty\)
\(d=\lim\dfrac{n^3-4n-\left(3n^2+4\right)\left(n-2\right)}{n^2-2n}=\lim\dfrac{-2n^3+6n^2-8n+8}{n^2-2n}\)
\(\lim\dfrac{-2n+6-\dfrac{8}{n}+\dfrac{8}{n^2}}{1-\dfrac{2}{n}}=\dfrac{-\infty}{1}=-\infty\)
\(e=\lim\dfrac{\sqrt{1+\dfrac{1}{n}}-\sqrt{5}}{\sqrt{1+\dfrac{1}{n}}+\sqrt{5}}=\dfrac{1-\sqrt{5}}{1+\sqrt{5}}\)
Đề bị lỗi công thức rồi bạn. Bạn cần viết lại để được hỗ trợ tốt hơn.
Tính giới hạn sau:
1) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n^3}\left(1+2^2+...+\left(n-1\right)^2\right)\)
2) \(\lim\limits_{n\rightarrow\infty}\dfrac{1}{n}[\left(x+\dfrac{a}{n}\right)+\left(x+\dfrac{2a}{n}\right)+...+\left(x+\dfrac{\left(n-1\right)a}{n}\right)]\)
3) \(\lim\limits_{n\rightarrow\infty}\dfrac{1^3+2^3+...+n^3}{n^4}\)
1.
Trước hết bạn nhớ công thức:
$1^2+2^2+....+n^2=\frac{n(n+1)(2n+1)}{6}$ (cách cm ở đây: https://hoc24.vn/cau-hoi/tinh-tongs-122232n2.83618073020)
Áp vào bài:
\(\lim\frac{1}{n^3}[1^2+2^2+....+(n-1)^2]=\lim \frac{1}{n^3}.\frac{(n-1)n(2n-1)}{6}=\lim \frac{n(n-1)(2n-1)}{6n^3}\)
\(=\lim \frac{(n-1)(2n-1)}{6n^2}=\lim (\frac{n-1}{n}.\frac{2n-1}{6n})=\lim (1-\frac{1}{n})(\frac{1}{3}-\frac{1}{6n})\)
\(=1.\frac{1}{3}=\frac{1}{3}\)
2.
\(\lim \frac{1}{n}\left[(x+\frac{a}{n})+(x+\frac{2a}{n})+...+(x.\frac{(n-1)a}{n}\right]\)
\(=\lim \frac{1}{n}\left[\underbrace{(x+x+...+x)}_{n-1}+\frac{a(1+2+...+n-1)}{n} \right]\)
\(=\lim \frac{1}{n}[(n-1)x+a(n-1)]=\lim \frac{n-1}{n}(x+a)=\lim (1-\frac{1}{n})(x+a)\)
\(=x+a\)
3.
Trước tiên ta có công thức:
$1^3+2^3+....+n^3=(1+2+3+...+n)^2=\frac{n^2(n+1)^2}{4}$
Chứng minh: https://diendantoanhoc.org/topic/81694-t%C3%ADnh-t%E1%BB%95ng-s-13-23-33-n3/
Khi đó:
\(\lim \frac{1^3+2^3+...+n^3}{n^4}=\lim \frac{n^2(n+1)^2}{4n^4}\\ =\lim \frac{(n+1)^2}{4n^2}=\frac{1}{4}\lim (1+\frac{1}{n})^2=\frac{1}{4}.1=\frac{1}{4}\)