cho tam giac ABC vuông tại C,BF và AE là 2 trung tuyến,r là bán kính đường tròn nội tiếp với AE=m,BF=n.Chứng minh rằng \(\frac{r^2}{m^2+n^2}< \frac{1}{20}\)
tìm giá trị lớn nhất của \(\frac{r^2}{m^2+n^2}\)
cho tam giác ABC vuông tại C, kẻ các trung tuyến AE=m và BF=n, Gọi r là bán kính dường tròn nội tiếp tam giác ABC. Tính GTLN của
\(\frac{r^2}{m^2+n^2}\)
Cho đường tròn ( O,R ). Đường kính AB. Vẽ các tiếp tuyến Ax, By của (O).Trên đường tròn lấy E ( E khác A,B).Tiếp tuyến tại E cắt Ax,By lần lượt tại C và D. Vẽ EF vuông góc với AB tại F. BC cắt EF tại I. EA cắt CF tại M, EB cắt DF tại N và K là trung điểm của AC.
1. Chứng minh I là trung điểm của EF và K, M, I, N thẳng hàng.
2. Gọi r là bán kính đường tròn nội tiếp tam giác COD. Chứng minh \(\frac{1}{3}<\frac{r}{R}<\frac{1}{2}\)
3. Gọi r1 , r2 lần lượt là bán kính đường tròn nội tiếp tam giác COE và DOE. Chứng minh rằng \(r^2=r_1^2+r_2^2\)
Đề đây này Gia Linh Trần
Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O,R), (AB<AC). Ba đường cao AE,BF,CK của tam giác ABC cắt nhau tại H. Vẽ đường kính AD của đường tròn (O,R)
a) Chứng minh: Tứ giác AKHF nội tiếp
b) Chứng minh DC//BF
c) Chứng minh: AB.AC=AE.AD
d) Cho BC=\(\frac{4\sqrt{2}R}{3}\). Tính theo R diện tích hình tròn ngoại tiếp tam giác HKF
1) CMR: Trong tam giác vuông đường kính đường tròn nội tiếp bằng tổng 2 cạnh góc vuông trừ cạnh huyền
2) Cho tam giác ABC vuông A đường cao AH. Gọi (O;R) bán kính (O1;R1) ; (O2;R2) thứ tự là đường tròn nội tiếp tam giác ABC; ABH; ACH.
a: CMR: R + R1 + R2 = AH
b: R^2 = R1^2 + R2^2
c: Tính O1O2. Biết AB = 3cm; AC = 4cm.
3) Cho đường tròn (I) nội tiếp tam giác ABC tiếp xúc BC thứ tự B;E;F. Qua E kẻ đường song song BC cắt AD, BF lần lượt tại M, N.
CMR: M là trung điểm EN
Cho đường tròn (O,R) đường kính AB cố định . Dây CD di động vuông góc với AB tại H giữa A và O . Lấy điểm F thuộc cung AC nhỏ ; BF cắt CD tại E , AF cắt tia DC tại l
1. Chứng minh : tứ giác AHEF nội tiếp
2. Chứng minh : HA.HB = HE.HI
3. Đường tròn nội tiếp tam giác IEF cắt AE tại M . Chứng minh M thuộc đường tròn (O,R).
4. Tìm vị trí của H trên OA để tam giác OHD có chu vi lớn nhất
Bài 1: Cho tam giac ABC vuông tại A. Vẽ ( B;BA ) và ( C;CA )
a. Gọi D là giao điểm thứ hai của đtron (B) và (C). Chứng minh CD là tiếp tuyến của đtron (B).
b. Vẽ đường kính DCE của đtron (C), tiếp tuyến của đtron (C) tại E cắt BA ở K. chứng minh CK vuông góc BC và CA^2 =BD.EK
c. Tam giác vuông ABC cần có thêm điều kiện gì để diện tích của tứ giác BKED nhỏ nhất.
Bài 2: Cho nửa đtron ( O;R) đường kính AB, kẻ hai tiếp tuyến Ax,By . Gọi M là một điểm bất kỳ trên nửa đtron.Kẻ tiếp tuyến qua M cắt Ax,By lần lượt tại E và F.
a. chứng minh EF=AE+BF
b.Chứng minh OE vuông goc với OF và OM^2 = AE.BF
c. Xác định vị trí của điểm M để AE+BF ngắn nhất.
GIẢI GIÚP MÌNH CÂU 1( c ) VÀ 2 (c) NHÉ CÁC BẠN. TKS CÁC BẠN NHIỀU :)
cho đường tròn tâm o bán kính r đường kính AB. trên cùng nữa mặt phẳng bờ là đường thẳng AB kẽ tiếp tuyền Ax,By,M€(O,R). kẽ tiếp tuyến tại M cắt Ax, By ở E và F aCm: AE+BF=EF bCm AE x BF không đổi c Xác định vị trí M để diện tích AEFB là nhỏ nhất
a: Xét (O) có
AE là tiếp tuyến
AM là tiếp tuyến
Do đó: AE=AM
Xét (O) có
FM là tiếp tuyến
FB là tiếp tuyến
Do đó: FM=FB
Ta có: FM+EM=EF
nên FE=AE+BF
Cho tam giác ABC vuông tại C . Kẻ các trung tuyến AE , BF . Đặt AE = m , BE = n . Gọi r là bán kính đường tròn nội tiếp tam giác ABC . Tìm giá trị lớn nhất của : \(\frac{r^2}{m^2+n^2}\) .
Cho tam giác ABC nội tiếp đường tròn ( O ; R ) , các tiếp tuyến tại B và C với đường tròn ( O ; R ) cắt nhau tại E, AE cắt ( O ; R ) tại D ( khác điểm A )
1. Chứng minh : tứ giác OBEC nội tiếp đương tròn
2. Từ E kẻ đường thẳng d song song với tiếp tuyến tại A của ( O ; R ) , d cắt các đường thẳng AB , AC lần lượt tại P , Q. Chứng minh :
AB . AC = AD . AE
3. Gọi M là trung điểm đoạn thẳng BC. Chứng minh : EP = EQ và \(\widehat{PAE}=\widehat{MAC}\)
4. CHứng minh : \(AM.MD=\frac{BC^2}{4}\)
a. Ta thấy ngay tứ giác OBEC có hai góc vuông đối nhau nên nó là tứ giác nội tiếp.
b. Câu này cô thấy cần sửa đề thành AB.AP = AD.AE mới đúng.
Gọi Aq là tiếp tuyến tại A của đường tròn (O). Khi đó ta có: \(\widehat{APE}=\widehat{BAq}\) (so le trong)
Mà \(\widehat{BAq}=\widehat{BDA}\) (Cùng chắn cung BA) nên \(\widehat{APE}=\widehat{BDA}\)
Vậy thì \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{AB}{AE}=\frac{AD}{AP}\Rightarrow AB.AP=AE.AD\)
c. +) Ta thấy \(\Delta BDE\sim\Delta ABE\left(g-g\right)\Rightarrow\frac{BD}{AB}=\frac{BE}{AE}\)
Tương tự \(\Delta CDE\sim\Delta ACE\left(g-g\right)\Rightarrow\frac{CD}{AC}=\frac{DE}{AE}\)
Mà BE = CE nên \(\frac{BD}{AB}=\frac{CD}{AC}\)
Lại có \(\Delta ABD\sim\Delta AEP\left(g-g\right)\Rightarrow\frac{BD}{EP}=\frac{AB}{AE}\Rightarrow EP=\frac{BD.AE}{AB}\)
Tương tự \(\Delta ACD\sim\Delta AEQ\left(g-g\right)\Rightarrow\frac{AC}{AE}=\frac{CD}{EQ}\Rightarrow EQ=\frac{CD.AE}{AC}=\frac{BD.AE}{AB}=EP\)
Vậy EP = EQ.
+) Ta thấy ngay \(\Delta ABC\sim\Delta AQP\Rightarrow\frac{BC}{QP}=\frac{AC}{AP}\Rightarrow\frac{BC:2}{QP:2}=\frac{AC}{QP}\)
\(\Rightarrow\frac{MC}{PE}=\frac{AC}{AP}\)
Lại có \(\widehat{ACM}=\widehat{APE}\) (Cùng bằng \(\widehat{BDA}\))
Từ đó suy ra \(\Delta AMC\sim\Delta AEP\Rightarrow\widehat{MAC}=\widehat{PAE}\)
d. Ta có BD.AC = AB.CD
Lại có do ABCD là tứ giác nội tiếp nên
AD.BC = AB.CD + AC.BD = 2AB.CD (Định lý Ptoleme) \(\Rightarrow2MC.AD=2AB.CD\Rightarrow MC.AD=AB.CD\)
\(\Rightarrow\frac{MC}{AB}=\frac{CD}{AD}\)
Lại thấy \(\widehat{BAD}=\widehat{BCD}\Rightarrow\Delta BAD\sim\Delta MCD\left(c-g-c\right)\)
Mà \(\Delta BAD\sim\Delta MAC\Rightarrow\Delta MCD\sim\Delta MAC\)
\(\Rightarrow\frac{MC}{MA}=\frac{MD}{MC}\Rightarrow MA.MD=MC^2=\frac{BC^2}{4}.\)
câu c) bạn có thể làm như vầy sẽ nhanh hơn
tam giác ABD đồng dạng với tam giác AEP => EP = AE.BD/AB
tam giác BED đồng dạng với tam giác AEB => BE = AE.BD/AB
EP = BE ( = AE.BD/AB)
tứ giác BCQP nội tiếp mà EC = EB = EP nên E là tâm của đường tròn ngoại tiếp tứ giác BCQP => EP = EQ