Cho tam giác ABC vuông tại A có BD là phân giác , kẻ DE vuông góc với BC ( E thuộc BC ) . Gọi F là giao điểm của AB và DE . CMR :
a , BD là đường trung trực AE
b , DF = DC
c , AD < DC
d , AE // FC
Làm giúp mình nhé , mình tích cho :3
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a) BD là đường trung trực của AE.
b) DF = DC.
c) AD < DC.
c) AE // FC.
a, Xét tam giác ABD vuông tại A và tam giác EBD vuông tại E ta có:
BD:cạnh chung; góc ABD= góc EBD(gt)
Do đó tam giác ABD=tam giác EBD(cạnh huyền - góc nhọn)
=> AB=EB; AD=ED(cặp cạnh tương ứng)
Vì AB=EB; AD=ED nên B là D nằm trên đường trung trực của AE
=> BD là đường trung trực của AE(đpcm)
b, Xét tam giác ADF và tam giác EDC ta có:
góc FAD=góc CED(=90độ);AD=ED(cmt); góc ADF=góc EDC(đối đỉnh)
Do đó tam giác ADF=tam giác EDC(g.c.g)
=> DF=DC(cặp cạnh tương ứng) (đpcm)
c, Xét tam giác DEC vuông tại E ta có:
DE<DC(do trong tam giác vuông cạnh huyền lớn nhất)
mà DE=DA=> DA<DC(đpcm)
d, Vì tam giác ADF=tam giác EDC(cm câu b)
=> AF=EC(cặp cạnh tương ứng)
Ta có: BF=BA+AF; BC=BE+EC
mà BA=BE;AF=EC(đã cm)
=> BF=BC
=> tam giác BCF cân tại B
mặc khác ta có: BA=BE(cm câu a)
=> tam giác ABE cân tại B
Xét tam giác BCF và tam giác ABE cân tại B ta có:
góc BAE=\(\dfrac{180^o-\text{góc}ABE}{2}\) ;góc BFC=\(\dfrac{180^o-\text{góc}FBC}{2}\)
=> góc BAE=góc BFC
=> AE//CF(do có 1 cặp góc bằng nhau ở vị trí đồng vị) (đpcm)
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC (E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a)BD là đường trung trực của AE
b)DF = DC
c)AD < DC
d)AE // FC
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông BC (E thuộc BC). Gọi F là giao điểm của AB và DE
Chứng minh rằng:
a, BD là trung trực của AE
b, DF = DC
c, AD < DC
d, AE // FC
a: Xet ΔBAD vuông tại A và ΔBED vuông tại E có
BD chung
góc ABD=góc EBD
=>ΔBAD=ΔBED
=>BA=BE và DA=DE
=>BD là trung trựccủa AE
b: Xét ΔDAF vuông tại A và ΔDEC vuông tại E có
DA=DE
góc ADF=gócEDC
=>ΔDAF=ΔDEC
=>DF=DC
c: AD=DE
mà DE<DC
nên AD<DC
d: Xet ΔBFC có BA/AF=BE/EC
nên AE//CF
Cho tam giác ABC vuông tại A, có BD là phân giác, kẻ DE vuông góc BC(E thuộc BC). Gọi F là giao điểm của AB và DE. CMR:
A, BD là trung trực của AE
B,DF=DC
C, AD<DC
D, AE//FC
1 , Cho tam giác ABC vuông tại A có BD là phân giác , kẻ DE vuông góc với BC ( E thuộc BC ) . Gọi F là giao điểm của AB và DE . CMR :
a , BD là đường trung trực AE
b , DF = DC
c , AD < DC
d , AE // FC
Làm giúp mình nhé , mình tích cho :3
Cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc vs BC (E thuộc BC). Gọi F là giao điểm của AB và DE. C/minh rằng:
a) BD là đường trung trực của AE
b) DF=DC
c)AD<DC
d) AE//FC
10 năm sau thì cha vẫn hơn con 24 tuổi
Ta có sơ đồ 10 năm sau :
Cha : |----|----|----|
Con : |----|
Tuổi con 10 năm sau là :
24: ( 3- 1 ) = 12 ( tuổi )
Tuổi con hiện nay là :
12 - 10 = 2 tuổi
Tuổi cha hiện nay là :
2 + 24 =26 ( tuổi )
Đáp số : .......
Sau 10 năm cha vẫn hơn con 24 tuổi.
=>Tuổi con 10 năm sau là: 24:(3-1)=12(tuổi)
Tuổi con hiện nay là: 12-10=2(tuổi)
Tuổi cha hiện nay là: 2+24=26(tuổi)
Đ/s:...
Bài này dễ như ăn cháo.
Cho tam giác ABC vuông tại A. Tia phân giác của góc B cắt AC ở D; E là 1 điểm nằm trên cạnh BC sao cho BE = BA.
a) CM: DE vuông góc với BC
b) Gọi F là giao điểm của DE và AB. CMR DE = DF
c) CM: AD<DC
d) CM BD là đường trung trực của AE và AE // FC
cho tam giác abc vuộng tại a có bd là phân giác , kẻ de vuông góc với bc (e thuộc bc ) . gọi f là giao điểm của ab với de . chứng minh :
a, bd là đường trung trực của ae
b, df=dc
c, ad<dc
cho tam giác ABC vuông tại A có BD là phân giác, kẻ DE vuông góc với BC(E thuộc BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng:
a) BD là trung trực của AE b) DF= DC c) AE// FC