Cho ABC vuông tại A có BD là phân giác, kẻ DE BC (E BC). Gọi F là giao điểm của AB và DE. Chứng minh rằng: a/ BD là trung trực của AE b/ DF = DC c/ AD c/ AD<DC d/ AE//FC vẽ hình vs ạ
cho tam giác abc vuông tại a kẻ phân giác BD kẻ DE vuông với BC( E thuộc BC) cho AB cắt DE tại F a,chứng minh BD là trung trực của AE b,chứng minh DF=DCc, chứng minh AD
Bài 14. Cho tam giác ABC vuông tại A, phân giác BD, kẻ DE vuông góc với BC tại E. Trên tia đối của tia AB lấy F sao cho AF — CE. CMR:
a) AABD AEBD
b) BD là đường trung trực của AE
c) AD < DC.
d) E, D, F thẳng hàng và BD LCF.
e) 2(AD+AF) > CF.
cho tam giác ABCD vuông tại A, đường phân giác BD. Kẻ DE vuông góc với BC ( E thuộc BC ). Tại F là giao điển của BA và ED. Chứng minh rằng:
a) tam giác ADB= tam giác EDB
b) BD là đường trung trực của AE
c) 2.(AD+AF) < FC
d) tam giác BCF cân
e) AE//CF
g) Xác định trực tâm của tam giác BCF
cho tam giác vuông tại B, vẽ đường phân giác AD (D thuộc BC ). Từ D kẻ DE vuông góc AC ( E thuộc AC )
a) Chứng minh: AD là đường trung trực của BE
b) Gọi F là giao điểm của tia DE và AB. Chứng minh tam giác ADF = Tam giác ADC
c) Chứng minh: BA + BC>DE+AC
Cho tam giác ABC vuông tại A, đường phân giác BD ( D thuộc AC ). Từ D kẻ DH vuông góc với BC.
a, Tam giác BAH là tam giác gì? Vì Sao?
b, So sánh AD và DC
c, Chứng minh: DB là phân giác của góc ADH
d, Gọi K là giao điểm của AB và DH. I là trung điểm của KC. Chứng minh: 3 điểm B; I; D thẳng hàng.
2. Cho tam giác ABC vuông tại A, đường phân giác BD. Qua D kẻ đường thẳng song song với
AB cắt BC tại E. Gọi F là giao điểm của AE và BD.
a) Chứng minh rằng đường thẳng CF đi qua trung điểm của AB.
b) Tính độ dài đoạn thẳng DE, biết AD = 3cm, DC = 5cm.
Cho tam giác ABC vuông tại A, BD là phân giác của góc B ( D thuộc AC). Trên tia BC lấy điểm E sao cho BA = BE
a/ Chứng minh DE vuông góc với BE
b/ Chứng minh BD là đường trung trực của AE
c/ Kẻ AH vuông góc với BC. So sánh EH và HC
1. Cho tam giác ABC vuông tại A (AC>AB) đường cao AH (H thuộc BC) trên tia HC lấy D sao cho HD = HA . đường vuông góc với BC tại D cắt AC tại E, tia AM cắt BC tại G .Chứng minh GB/BC = HD/ AH+HC (/ là phân số).
2. Cho hình vuông ABCD có cạnh bằng a. Gọi E, F lần lượt là trung điểm của các cạnh AB, BC, M là giao điểm CE và DF. Tính diện tích tam giác MDC theo a
3. Hình thang ABCD có AB//CD, đường cao bằng 12m, AC vuông góc BD, BD = 15m.
a) Qua B kẻ đường thẳng song song với AC, cắt DC ở E. Chứng minh BD2 = DE*DH. Từ đó tính DE.
b. Tính SABCD?