Tính 1/1.2.3 + 1/2.3.4 + ... + 1/49.50.51
tính tổng sau
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
0 nhớ chắc chắn nhưng xem có bài nào giạng đấy 0 và giải hộ
tính tổng sau
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+.......+\frac{1}{49.50.51}\)
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.5}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{50.51}\)
\(=\frac{1}{2}-\frac{1}{2550}=\frac{637}{1275}\)
Gọi A là tổng dãy phân số trên
Ta có :
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
Ta thấy:
\(\frac{2}{1.2.3}=\frac{1}{1.2}-\frac{1}{2.3};\frac{2}{2.3.4}=\frac{1}{2.3}-\frac{1}{3.4};...;\frac{2}{49.50.51}=\frac{2}{49.50}-\frac{2}{50.51}\text{}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(\Rightarrow2A=\frac{1}{2}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{1275}{2550}-\frac{1}{2550}\)
\(\Rightarrow2A=\frac{637}{1275}\Rightarrow A=\frac{637}{1275}:2=\frac{637}{2550}\)
Vậy tổng dãy phân số trên là :\(\frac{637}{2550}\)
Chúc bạn học tốt !!! :D
tính tổng sau
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
giúp mình nha mình cần gấp
gọi A=1/1*2*3+1/2*3*4+...+1/49*50*51
2A=2(1/1*2*3+1/2*3*4+...+1/49*50*51)
2A=2/1*2*3+2/2*3*4+...+2/49*50*51
2A=1/1*2-1/2*3+1/2*3-1/3*4+...+1/49*50-1/50*51
2A=1/2-1/2550
2A=637/1275
A=637/1275:2
A=637/2550
qua bài trên ta có công thức \(\frac{1}{n\cdot\left(n+1\right)\cdot\left(n+2\right)}\)= \(\frac{1}{n\cdot\left(n+1\right)}\)-\(\frac{1}{\left(n+1\right)\cdot\left(n+2\right)}\)
lộn công thức là 2/n*(n+1)*(n+2)=1/n*(n+1)-1/(n+1)*(n+2) cho tui xin lỗi
mà tick nhé
1/1.2.3+1/2.3.4+1/3.4.5+....+1/49.50.51
Giải nhanh giúp mình với , cái dấu / là vạch giữa tử và mẫu
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{49.50.51}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{50.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2550}\right)=\frac{637}{2550}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
ta có dạng tổng quát
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)-\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) bạn quy đồng ra rồi tính nha
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{49.50}-\frac{1}{50.51}\)
\(2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(2A=\frac{637}{1275}\)
\(A=\frac{637}{2550}\)
Tìm D, biết:
D= 1.2.3 + 2.3.4 + 3.4.5 + ... + 49.50.51
`D=1.2.3+2.3.4+3.4.5+....+49.50.51`
`=>4D=1.2.3.4+2.3.4.4+3.4.5.4+.....+49.50.51`
`=>4D=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+.....+49.50.51.(52-48)`
`=>4D=1.2.3.4+2.3.4.5-1.2.3.4+3.4.5.6-2.3.4.5+.....+49.50.51.52-48.49.50.51`
`=>4D=49.50.51.52=49.50.51.13.4`
`=>D=13.49.50.51`
Giải:
\(D=1.2.3+2.3.4+3.4.5+...+49.50.51\)
\(4D=1.2.3.4+2.3.4.\left(5-1\right)+3.4.5.\left(6-2\right)+...+49.50.51.\left(52-48\right)\)
\(4D=1.2.3.3.4+2.3.4.5-2.3.4.1+3.4.5.6-3.4.5.2+...+49.50.51.52-49.50.51.48\)
\(4D=49.50.51.52\)
\(4D=6497400\)
\(D=6497400:4\)
\(D=1624350\)
Tính :
A = \(\frac{3}{1.3}+\frac{1}{3.5}+...+\frac{3}{19.20}\)
B = \(\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}\)
câu a phải là như z ms làm được bn ơi
A = \frac{3}{1.3}+\frac{1}{3.5}+...+\frac{3}{19.20}
\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}
câu a thấy kì kì sao đó nha
3/19.20 ===> sai oy
phải là 3/19.21
Tính
B = \(\frac{3}{1.2.3}+\frac{3}{2.3.4}+...+\frac{3}{49.50.51}\)
\(B=\frac{3}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\right)\)
\(=\frac{3}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+...+\frac{1}{49.50}-\frac{1}{50.51}\right)\)
\(=\frac{3}{2}\left(\frac{1}{2}-\frac{1}{2550}\right)\)
\(=\frac{3}{2}\cdot\frac{637}{1275}\)
\(=\frac{637}{850}\)
Tính giá trị của biểu thức :
a = 1.2+2.3+3.4+........+99.100
c = 1.2.3+2.3.4+3.4.5+.....+49.50.51
A = 1.2 + 2.3 + ... + 99.100
3A = 1.2.3 + 2.3.(4-1) + ... + 99.100.(101-98)
3A = 1.2.3 + 2.3.4 - 1.2.3 + ... + 99.100.101 - 98.99.100
3A = 99.100.101
3A = 999900
A = 333300
C = 1.2.3 + 2.3.4 + ... + 49.50.51
4C = 1.2.3.4 + 2.3.4.(4-1) + ... + 49.50.51.(52-48)
4c = 1.2.3.4 + 2.3.4.5 - 1.2.3.4 + ... + 49.50.51.52 - 48.49.50.51
4C = 49.50.51.52
4C = 6497400
C = 1624350
Ta có :
a=1.2+2.3+3.4+...+99.100
3a=1.2.3+2.3.3+3.4.3+...+99.100.3
3a=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)
3a=1.2.3+2.3.4-1.2.3+3.4.5-2.3.4+...+99.100.101-98.99.100
3a=99.100.101
a=\(\frac{99.100.101}{3}\)
a=333300
Tính c làm tương tự
a = 1.2 + 2.3 + 3.4 + ... + 99.100
3a = 1.2.3 + 2.3.3 + 3.4.3 + ... + 99.100.3
3a = 1.2.3 + 2.3.(4 - 1) + 3.4.(5 - 2) + ... + 99.100. (101 - 98)
3a = 1.2.3 + 2.3.4 - 1.2.3 + 3.4.5 - 2.3.4 + ... + 99.100.101 - 98.99.100
3a = 99 . 100 . 101
3a = 3 . 33 . 100 . 101
a = 33 . 100 . 101
a = 333300