1 tìm số tự nhiên x biết
2x+3+2x=144
Tìm số tự nhiên x, biết rằng:
2x + 2x + 3 = 144
Ta có: 2x + 2x + 3 = 144
=> 2x + 2x.23 = 144
=> 2x.(1 + 8) = 144
=> 2x.9 = 144
=> 2x = 144 : 9 = 16 = 24
=> x = 4.
Vậy x= 4
Tìm số tự nhiên x biết:
a) 3x-1 + 5 . 3x-1 = 162 ; b) 2x + 3 + 2x = 144
Tìm số tự nhiên x biết:
a, 2x + 2x+3= 144
b, (x-5)2022 = (x-5)2021
c, (2.x+1)3 = 9.81
Giúp mik vs ạ ^^
\(a,2^x+2^{x+3}=144\\ 2^x.\left(1+2^3\right)=144\\ 2^x.9=144\\ 2^x=144:9\\ 2^x=16=2^4\\ vậy:x=4\)
\(b,\left(x-5\right)^{2022}=\left(x-5\right)^{2021}\\ Vì:\left[{}\begin{matrix}0^{2022}=0^{2021}\\1^{2022}=1^{2021}\end{matrix}\right.\\ Vậy:\left[{}\begin{matrix}x-5=0\\x-5=1\end{matrix}\right.\Leftrightarrow\left[{}\begin{matrix}x=5\\x=6\end{matrix}\right.\)
\(c,\\ \left(2x+1\right)^3=9.81\\ \left(2x+1\right)^3=3^2.3^4\\ \left(2x+1\right)^3=3^6\\ \left(2x+1\right)^3=\left(3^2\right)^3=9^3\\ Vậy:2x+1=9\\ 2x=9-1\\ 2x=8\\ x=\dfrac{8}{2}\\ x=4\)
Tìm số tự nhiên x,y biết:
22x.3y=144
Tìm số tự nhiên x và y, biết 22x.3y=144
22x.3y=144
22x.3y=16.9(có thể là bằng 3.48 nhưng nó không hợp lệ)
nếu : 22x.3y=16.9
22x=16 thì x=2 ;3y=9 thì y=2
(22x không thể bằng 9 đk vì không có số nào 22x=9 đk cả)
Tìm số tự nhiên x,y biết
22x.3y=144
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a,(2x+1)(y-3)=12
⇒⇒2x+1 và y-3 ∈∈Ư(12)={±1;±2;±3;±4;±6;±12}{±1;±2;±3;±4;±6;±12}
2x+1 | 1 | -1 | 2 | -2 | 3 | -3 |
y-3 | 12 | -12 | 6 | -6 | 4 | -4 |
x | 0 | -1 | 1212 | −32−32 | 1 | -2 |
y | 15 | -9 | 9 | 3 | 7 | -1 |
=>x=0,y=15
c) Ta có: \(36^{25}=\left(6^2\right)^{25}=6^{50}\)
\(25^{36}=\left(5^2\right)^{36}=5^{72}\)
Ta có: \(6^{50}=\left(6^5\right)^{10}=7776^{10}\)
mà \(5^{70}=\left(5^7\right)^{10}=78125^{10}\)
nên \(6^{50}< 5^{70}\)
mà \(5^{70}< 5^{72}\)
nên \(6^{50}< 5^{72}\)
hay \(36^{25}< 25^{36}\)
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a) Tìm số tự nhiên x, y biết: (2x+1)(y-3)=12
b) Tìm số tự nhiên x biết: 2x+2x+1+2x+2+...+2x+2015=22019-8
c) So sánh: 3625 và 2536
a/
Với $x,y$ là số tự nhiên $2x+1, y-3$ là số nguyên. Mà $(2x+1)(y-3)=12$ nên $2x+1$ là ước của 12.
$2x+1>0, 2x+1$ lẻ nên $2x+1\in \left\{1;3\right\}$
Nếu $2x+1=1\Rightarrow y-3=12$
$\Rightarrow x=0; y=15$
Nếu $2x+1=3\Rightarrow y-3=4$
$\Rightarrow x=1; y=7$
Vậy...........
b/
$2^x+2^{x+1}+2^{x+2}+...+2^{x+2015}=2^{2019}-8$
$2^x(1+2+2^2+2^3+...+2^{2015})=2^{2019}-8(1)$
$2^x(2+2^2+2^3+2^4+...+2^{2016})=2^{2020}-16(2)$ (nhân 2 vế với 2)
Lấy (2) trừ (1) theo vế thì:
$2^x(2^{2016}-1)=2^{2020}-2^{2019}-8$
$2^x(2^{2016}-1)=2^{2019}(2-1)-8=2^{2019}-8$
$2^x(2^{2016}-1)=2^3(2^{2016}-1)$
$\Rightarrow 2^x=2^3$
$\Rightarrow x=3$
c/
$25^{36}=(5^2)^{36}=5^{72}$
$36^{25}=(6^2)^{25}=6^{50}=(6^5)^{10}< (5^7)^{10}=5^{70}< 5^{72}$
$\Rightarrow 25^{36}> 36^{25}$
a,Tìm số tự nhiên x biết: 3^2x+3-3^2x+1=216
b. Tìm tất cả các số tự nhiên x và y thoả mãn 2x.(y+1)+y=6