Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
Oanh Lê Thị
Xem chi tiết
????
Xem chi tiết
Nguyễn Lê Phước Thịnh
20 tháng 12 2022 lúc 0:16

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

Vũ Ngọc Diệp
Xem chi tiết
Nguyễn Việt Lâm
20 tháng 3 2023 lúc 12:23

Gọi \(d=ƯC\left(3n+2;6n+5\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}3n+2⋮d\\6n+5⋮d\end{matrix}\right.\)

\(\Rightarrow6n+5-2\left(3n+2\right)⋮d\)

\(\Rightarrow1⋮d\)

\(\Rightarrow d=1\)

\(\Rightarrow3n+2\) và \(6n+5\) nguyên tố cùng nhau

Hay P tối giản

Sinh Nguyễn Thành
10 tháng 4 2023 lúc 21:39

loading...

Pham Huy Bach
Xem chi tiết
HELLO^^^$$$
11 tháng 4 2021 lúc 20:19

a,Gọi ƯCLN(n+3,2n+7)=d

n+3⋮d ⇒2n+6⋮d

2n+7⋮d ⇒2n+7⋮d

(2n+7)-(2n+6)⋮d

1⋮d ⇒ƯCLN(n+3,2n+7)=1

Vậy phân số n+3/2n+7 là phân số tối giản

HELLO^^^$$$
11 tháng 4 2021 lúc 20:21

a,Gọi ƯCLN(3n+7,6n+15)=d

3n+7⋮d ⇒6n+14⋮d

6n+15⋮d ⇒6n+15⋮d

(6n+15)-(6n+14)⋮d

1⋮d ⇒ƯCLN(3n+7,6n+15)=1

Vậy phân số 3n+7/6n+15 là phân số tối giản

a) Gọi ƯCLN(n+3,2n+7)=d

n+3⋮d ⇒2n+6⋮d

2n+7⋮d ⇒2n+7⋮d

(2n+7)-(2n+6)⋮d

1⋮d ⇒ƯCLN(n+3,2n+7)=1

Vậy phân số n+3/2n+7 là phân số tối giản

b) Gọi ƯCLN(3n+7,6n+15)=d

3n+7⋮d ⇒6n+14⋮d

6n+15⋮d ⇒6n+15⋮d

(6n+15)-(6n+14)⋮d

1⋮d ⇒ƯCLN(3n+7,6n+15)=1

Vậy phân số 3n+7/6n+15 là phân số tối giản

Nguyễn Hoàng Tuấn Tú
Xem chi tiết
Nguyễn Lê Phước Thịnh
14 tháng 3 2022 lúc 15:39

a: Gọi a=UCLN(5n+14;n+3)

\(\Leftrightarrow5n+14-5n-15⋮a\)

\(\Leftrightarrow-1⋮a\)

hay a=1

=>5n+14/n+3 là phân số tối giản

b: Gọi d=UCLN(3n-2;4n-3)

\(\Leftrightarrow4\left(3n-2\right)-3\left(4n-3\right)⋮d\)

\(\Leftrightarrow1⋮d\)

=>d=1

=>3n-2/4n-3 là phân số tối giản

Nguyễn Phương Anh
Xem chi tiết
Nguyễn An Ninh
22 tháng 4 2023 lúc 17:37

a: Gọi d=ƯCLN(15n+1;30n+1)

=>30n+2-30n-1 chia hết cho d

=>1 chia hết cho d

=>Đây là phân số tối giản

b: Gọi d=ƯCLN(3n+2;5n+3)

=>15n+10-15n-9 chia hết cho d

=>1 chia hết cho d

=>d=1

=>Phân số tối giản

Phạm Chí Bảo
Xem chi tiết
Đoàn Đức Hà
11 tháng 4 2021 lúc 19:54

a) Đặt \(d=\left(n+3,2n+7\right)\).

Suy ra 

\(\hept{\begin{cases}n+3⋮d\\2n+7⋮d\end{cases}}\Rightarrow\hept{\begin{cases}2\left(n+3\right)⋮d\\2n+7⋮d\end{cases}}\Rightarrow\left(2n+7\right)-2\left(n+3\right)=1⋮d\)

\(\Rightarrow d=1\).

Do đó ta có đpcm.

b) Tương tự ý a).

Khách vãng lai đã xóa
Phạm Chí Bảo
11 tháng 4 2021 lúc 20:13

trả lời giúp mình nnhe bạn

Khách vãng lai đã xóa
le trung kien
Xem chi tiết
Đoàn Đức Hà
31 tháng 8 2021 lúc 15:13

a) Đặt \(d=\left(15n+1,30n+1\right)\).

Suy ra \(\hept{\begin{cases}15n+1⋮d\\30n+1⋮d\end{cases}}\Rightarrow2\left(15n+1\right)-\left(30n+1\right)=1⋮d\Rightarrow d=1\).

Ta có đpcm. 

b) Đặt \(d=\left(n^3+2n,n^4+3n^2+1\right)\).

Suy ra \(\hept{\begin{cases}n^3+2n⋮d\\n^4+3n^2+1⋮d\end{cases}}\Rightarrow\left(n^4+3n^2+1\right)-n\left(n^3+2n\right)=n^2+1⋮d\)

\(\Rightarrow\left(n^4+3n^2+1\right)-n^2\left(n^2+1\right)-2\left(n^2+1\right)=-1⋮d\)

Suy ra \(d=1\).

Suy ra đpcm. 

Khách vãng lai đã xóa
Cường Phạm
Xem chi tiết
Nguyễn Việt Lâm
30 tháng 3 2023 lúc 21:30

Gọi \(d=ƯC\left(6n+7;3n+2\right)\) với \(d\ge1;d\in N\)

\(\Rightarrow\left\{{}\begin{matrix}6n+7⋮d\\3n+2⋮d\end{matrix}\right.\)

\(\Rightarrow6n+7-2\left(3n+2\right)⋮d\)

\(\Rightarrow3⋮d\) \(\Rightarrow\left[{}\begin{matrix}d=1\\d=3\end{matrix}\right.\)

Mà \(\left\{{}\begin{matrix}6n+7=3\left(2n+2\right)+1⋮̸3\\3n+2⋮̸3\end{matrix}\right.\) \(\Rightarrow d\ne3\)

\(\Rightarrow d=1\Rightarrow6n+7\) và \(3n+2\) nguyên tố cùng nhau

Hay \(\dfrac{6n+7}{3n+2}\) tối giản với mọi n tự nhiên

Trần Đức Anh
30 tháng 3 2023 lúc 21:57

Gọi d là ƯC(6n+7;3n+2) với d≠0;d ≥1(d∈N)

⇒ 6n+7 ⋮ d

     3n+2 ⋮ d

⇒6n+7 - 2(3n+2)⋮ d

⇒3⋮d

d∈(1;3)

Vậy 6n+7/3n+2 là phân số tối giản vì là nguyên tố cùng nha

 

 

Sinh Nguyễn Thành
10 tháng 4 2023 lúc 21:38

loading...