cho A= 1 + 2 + 2^2 + 2^3 + 2^4 + ....+ 2^2016
a) tính tổng A
b) tìm số dư của A khi chia cho 7
Cho A= 1 + 2 + 2^2 + 2^3 + 2^4 +...+ 2^2016
a) tính tổng A
b) tìm số dư của A khi chia cho 7
c) Tìm chữ số tận cùng của A
a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017
=> 2A-A= 2^2017-1
=> A= 2^2017-1/2
Cho A=1+2+22+23+.......+22005
a/ Tính tổng A
b/ Tìm chữ số tận cùng A
c/ Tìm số dư khi chia A cho 7
d/ Tìm số dư khi chia A cho 6
a, \(A=1+2+2^2+2^3+...+2^{2005}\)
\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)
\(2A=2+2^2+2^3+...+2^{2006}\)
\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)
\(A=2^{2006}-1\)
c, Số số hạng của A là : (2005 - 1) + 1 = 2005 (số hạng)
Nếu nhóm 3 số hạng vào 1 nhóm thì có : 2005 : 3 = 668 nhóm dư 1 số hạng
Ta có :
\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)
\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)
\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)
\(\Rightarrow A\div7\) dư 3
d, Làm tương tự c
Bài 13:
a) Tính tổng S=1.2^2+2.3^2+. . .+99.100^2
b) Tìm số dư khi chia A= 1+2+2^2+. . .+2^50 cho 3; 7; 15.
a/
S=1.2.(3-1)+2.3.(4-1)+3.4.(5-1)+...+99.100.(101-1)=
=1.2.3+2.3.4+3.4.5+...+99.100.101-(1.2+2.3+3.4+...+99.100)
Đặt
A=1.2.3+2.3.4+3.4.5+...+99.100.101
4A=1.2.3.4+2.3.4.4+3.4.5.4+...+99.100.101.4=
=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+...+99.100.101.(102-98)=
=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-...-98.99.100.101+99.100.101.102=
=99.100.101.102
=> A=99.100.101.102:4=99.25.100.102
Đặt
B=1.2+2.3+3.4+...+99.100
3B=1.2.3+2.3.3+3.4.3+...+99.100.3=
=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)=
=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=
=99.100.101
=> B=99.100.101:3=33.100.101
=> S=A-B
Bạn tự tính nốt nhé
b/
Tổng trên có 51 số hạng
A=1+(2+22)+(23+24)+...+(249+250)=
=1+2(1+2)+23(1+2)+...+249(1+2)=
=1+3(2+23+25+...+249) => A:3 dư 1
Ta có
A=(1+2+22)+(23+24+25)+(26+27+28)+...+(248+249+250)=
=7+23(1+2+22)+26(1+2+22)+...+248(1+2+22)=
=7(1+23+26+...+248) chia hết cho 7
Ta có
A=1+2+22+(23+24+25+26)+...+(247+248+249+250)=
=7+23(1+2+22+23)+...+247(1+2+22+23)=
=7+15(23+...+247)
=> A chia 15 dư 7
Cho A= 1+2+2^2+2^3+...+2^41.
a)Thu gọn tổng A.
b)Chứng tỏ rằng A chia hết cho 7 và 3.
c)Tìm số dư của A khi chia cho 5.
a) A = 1 + 2 + 2² + ... + 2⁴¹
⇒ 2A = 2 + 2² + 2³ + ... + 2⁴²
⇒ A = 2A - A
= (2 + 2² + 2³ + ... + 2⁴²) - (1 + 2 + 2² + ... + 2⁴¹)
= 2⁴² - 1
b) A = 1 + 2 + 2² + ... + 2⁴¹
= (1 + 2 + 2²) + (2³ + 2⁴ + 2⁵) + ... + (2³⁹ + 2⁴⁰ + 2⁴¹)
= 7 + 2³.(1 + 2 + 2²) + ... + 2³⁹.(1 + 2 + 2²)
= 7 + 2³.7 + ... + 2³⁹.7
= 7.(1 + 2³ + ... + 2³⁹) ⋮ 7
Vậy A ⋮ 7
Ta có:
A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰ + 2⁴¹
= (1 + 2) + (2² + 2³) + ... + (2⁴⁰ + 2⁴¹)
= 3 + 2².(1 + 2) + ... + 2⁴⁰.(1 + 2)
= 3 + 2².3 + ... + 2⁴⁰.3
= 3.(1 + 2² + ... + 2⁴⁰) ⋮ 3
Vậy A ⋮ 3
c) A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰
= (1 + 2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶ + 2⁷) + ... + (2³⁸ + 2³⁹ + 2⁴⁰ + 2⁴¹)
= 15 + 2⁴.(1 + 2 + 2² + 2³) + ... + 2³⁸.(1 + 2 + 2² + 2³)
= 15 + 2⁴.15 + ... + 2³⁸.15
= 15.(1 + 2⁴ + ... + 2³⁸)
= 5.3.(1 + 2⁴ + ... + 2³⁸) ⋮ 5
Vậy A chia 5 dư 0
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$
`2A - A = - 1 + 2^42`$\\$
hay `A = -1 + 2^42`$\\$
`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$
`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$
`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$
`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$
`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^{42}`$\\$
`2A - A = - 1 + 2^{42}`$\\$
hay `A = -1 + 2^{42}`$\\$
Cho A = 1 +5 + \(5^2+5^3+...+5^{464}\)
Tính sô dư của A khi chia co 2^5
b = 1+ 2 + 2^2 +2^3 + 2^4 + .... + 2^2002
Tìm số dư của B khi chia cho 7
1.Tìm số tự nhiên lón nhất có 4 chữ số sao cho khi đem số đó lần lượt chia cho các số 11,13,17 thì đều có số dư bằng 7
2.Tìm số tự nhiên a nhỏ nhất biết khi chia a cho 6 dư 2,chia a cho 7 dư 3 ,chia a cho 9 dư 5.
3.Gọi x là tổng các chữ số của a=32010+2011.Gọi y là tổng các chữ số của x và gọi z là tổng các chữ số của y.tìm z
Làm nhanh giùm mk nha.bạn nào trả lời nhanh và đúng nhất mk cho 2 tick(vì mk có 2 nick)
1.
Gọi số cần tìm là a
theo bài ra ta có: a-7 chia hết 11
a-7 chia hết 13
a-7 chia hết 17 và a là số lớn nhất có 4 chữ số
=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số
BCNN (11,13,17)=2431
(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)
=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)
mà a là số lớn nhất có 4 chữ số
nên a=9731
Vậy số cần tìm là 9731
Bài 1:
a,CTR tổng A = 2 + 22 + 23 + ... + 299 + 2100 chia hết cho 3 .
b,Tìm số dư khi chia A cho 7 .
Bài 2: Chia STN a cho 7 dư 4
Chia STN b cho 7 dư 3
Chia STN c cho 7 dư 1 .
a, CTR a + 5 chia hết cho 7
b,Tìm số dư khi chia b + c cho 7 .
Ai nhanh và đug mik tick cho !!!
mk chỉ làm đc câu a) bài 1 thôi nha !
Bài 1 .
Ta có :
a) A = (2+22)+(23+24)+...+299+2100
=> A = (1+2).21+(1+2).23+...+(1+2).299
=> A = 3.(21+23+...+299) \(⋮\)3
=> A \(⋮\)3
Cho a = 1+2+2^2+2^3 + ... +2^41
a, Tính A
b, Chứng minh rằng A chia hết cho 3 , A chia hết cho 7
c , Tìm số dư của A khi chia cho 5
a) \(A=1+2+2^2+...+2^{41}\)
\(2A=2+2^2+...+2^{42}\)
\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)
\(A=2^{42}-1\)
b) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)
\(A=3+2^2\cdot3+...+2^{40}\cdot3\)
\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)
Vậy A ⋮ 3
__________
\(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)
\(A=7+...+2^{39}\cdot7\)
\(A=7\cdot\left(1+..+2^{39}\right)\)
Vậy: A ⋮ 7
c) \(A=1+2+2^2+...+2^{41}\)
\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)
\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)
\(A=5\cdot\left(1+2+...+2^{39}\right)\)
A ⋮ 5 nên số dư của A chia cho 5 là 0
A = 1 + 2 + 22 + 23 + ... + 241
2A = 2 + 22 + 23 + 24 +...+ 242
a, 2A - A = 2 + 22 + 23 + 24+...+ 242 - (1 + 2 + 22 + 23 + ... + 241)
A = 2 + 22 + 23 + 24 +...+242 - 1 - 2 - 22 - 23 -...- 241
A = 242 - 1
b, A = 1 + 2 + 22 + 23 + ... + 241
A = 20 + 21 + 22 + 23 + ... + 241
Xét dãy số: 0; 1; 2;...; 41 dãy số này có: (41- 0):1 + 1 = 42 (số hạng)
Vậy A có 42 hạng tử. Nhóm hai số hạng liên tiếp của A với nhau thành một nhóm, vì 42: 2 = 21 nên
A = (20 + 21) + (22 + 23) +...+ (240 + 241)
A = 3 + 22.(1 + 2) +...+ 240.(1 + 2)
A = 3 + 22. 3 +...+ 240. 3
A = 3.(1 + 22 + ... + 240)
Vì 3 ⋮ 3 nên A = 3.(1 + 22 + ... + 240) ⋮ 3 (1)
Vì A có 42 hạng tử mà 42 : 3 = 14 vậy nhóm ba hạng tử liên tiếp của A thành 1 nhóm ta được:
A = (1 + 2 + 22) + (23 + 24 + 25) +...+ (239 + 240 + 241)
A = 7 + 23.(1 + 2 + 22) +...+ 239.(1 + 2 + 22)
A = 7 + 23.7 +...+ 239.7
A = 7.(1 + 23 +...+ 239)
Vì 7 ⋮ 7 nên A = 7.(1 + 23+...+ 239)⋮ 7 (2)
Kết hợp (1) và (2) ta có: A ⋮ 3; 7(đpcm)
c, A = 242 - 1
A = (24)10.22 - 1
A = \(\overline{...6}\)10.4 - 1
A = \(\overline{..4}\) - 1
A = \(\overline{...3}\)
Vậy A : 5 dư 3
BAI 1 ;CHO BIEU THUC A=1+2+2^2+2^3+...+2^101+2^102
a) chứng minh rằng A chia hết cho 3;7 và chia hết cho 21
b) tìm chữ số tận cùng của tổng trên
BÀI 2; CHO BIEU THUC B = 1+7+7^2+...+7^2014+7^2015
a) chứng minh rằng B chia hết cho 57
b) biểu thức B chia cho 7 dư bao nhiêu
c) tìm số dư khi chia B cho 49
BÀI 3;CHO BIỂU THỨC A= 1+3+3^2+3^3+...+3^x
a) rút gọn biểu thức A
b) tìm x để bieu thức A= 3280
c) với x=17. chứng minh rằng A chia hết cho 4
đ) với x = 2017. tìm số dư cho phép chia A cho 9