Bạn chưa đăng nhập. Vui lòng đăng nhập để hỏi bài

Những câu hỏi liên quan
trần huyền trang
Xem chi tiết
Hoàng Nữ Linh Đan
10 tháng 7 2016 lúc 21:16

a, 2A= 2+2^2+2^3+2^4+2^5+...+2^2017

=> 2A-A= 2^2017-1

=> A= 2^2017-1/2

Nguyễn Thị Vương Nga
Xem chi tiết
Ewr5y5y
16 tháng 10 2017 lúc 10:48

a, \(A=1+2+2^2+2^3+...+2^{2005}\)

\(2A=2.\left(1+2+2^2+2^3+...+2^{2005}\right)\)

\(2A=2+2^2+2^3+...+2^{2006}\)

\(A=2A-A=\left(2+2^2+2^3+...+2^{2006}\right)-\left(1+2+2^2+2^3+...+2^{2015}\right)\)

\(A=2^{2006}-1\)

c, Số số hạng của A là : (2005 -  1) + 1 = 2005 (số hạng) 

Nếu nhóm 3 số hạng vào 1 nhóm thì có :  2005 : 3 = 668 nhóm dư 1 số hạng 

Ta có : 

\(A=\left(1+2\right)+\left[\left(2^2+2^3+2^4\right)+\left(2^5+2^6+2^7\right)+...+\left(2^{2003}+2^{2004}+2^{2005}\right)\right]\)

\(A=3+\left[2^2.\left(1+2+2^2\right)+2^5.\left(1+2+2^2\right)+...+2^{2003}.\left(1+2+2^2\right)\right]\)

\(A=3+\left(2^2.7+2^5.7+...+2^{2003}.7\right)\)

\(\Rightarrow A\div7\) dư 3 

d, Làm tương tự c

TrầnHoàngGiang
Xem chi tiết
Nguyễn Ngọc Anh Minh
22 tháng 8 2023 lúc 7:41

a/

S=1.2.(3-1)+2.3.(4-1)+3.4.(5-1)+...+99.100.(101-1)=

=1.2.3+2.3.4+3.4.5+...+99.100.101-(1.2+2.3+3.4+...+99.100)

Đặt

A=1.2.3+2.3.4+3.4.5+...+99.100.101

4A=1.2.3.4+2.3.4.4+3.4.5.4+...+99.100.101.4=

=1.2.3.4+2.3.4.(5-1)+3.4.5.(6-2)+...+99.100.101.(102-98)=

=1.2.3.4-1.2.3.4+2.3.4.5-2.3.4.5+3.4.5.6-...-98.99.100.101+99.100.101.102=

=99.100.101.102

=> A=99.100.101.102:4=99.25.100.102

Đặt 

B=1.2+2.3+3.4+...+99.100

3B=1.2.3+2.3.3+3.4.3+...+99.100.3=

=1.2.3+2.3.(4-1)+3.4.(5-2)+...+99.100.(101-98)=

=1.2.3-1.2.3+2.3.4-2.3.4+3.4.5-...-98.99.100+99.100.101=

=99.100.101

=> B=99.100.101:3=33.100.101

=> S=A-B

Bạn tự tính nốt nhé

b/

Tổng trên có 51 số hạng

A=1+(2+22)+(23+24)+...+(249+250)=

=1+2(1+2)+23(1+2)+...+249(1+2)=

=1+3(2+23+25+...+249) => A:3 dư 1

Ta có

A=(1+2+22)+(23+24+25)+(26+27+28)+...+(248+249+250)=

=7+23(1+2+22)+26(1+2+22)+...+248(1+2+22)=

=7(1+23+26+...+248) chia hết cho 7

Ta có

A=1+2+22+(23+24+25+26)+...+(247+248+249+250)=

=7+23(1+2+22+23)+...+247(1+2+22+23)=

=7+15(23+...+247)

=> A chia 15 dư 7

 

TH Thanh Hồng Hải
Xem chi tiết
Kiều Vũ Linh
25 tháng 10 2023 lúc 20:53

a) A = 1 + 2 + 2² + ... + 2⁴¹

⇒ 2A = 2 + 2² + 2³ + ... + 2⁴²

⇒ A = 2A - A

= (2 + 2² + 2³ + ... + 2⁴²) - (1 + 2 + 2² + ... + 2⁴¹)

= 2⁴² - 1

b) A = 1 + 2 + 2² + ... + 2⁴¹

= (1 + 2 + 2²) + (2³ + 2⁴ + 2⁵) + ... + (2³⁹ + 2⁴⁰ + 2⁴¹)

= 7 + 2³.(1 + 2 + 2²) + ... + 2³⁹.(1 + 2 + 2²)

= 7 + 2³.7 + ... + 2³⁹.7

= 7.(1 + 2³ + ... + 2³⁹) ⋮ 7

Vậy A ⋮ 7

Ta có:

A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰ + 2⁴¹

= (1 + 2) + (2² + 2³) + ... + (2⁴⁰ + 2⁴¹)

= 3 + 2².(1 + 2) + ... + 2⁴⁰.(1 + 2)

= 3 + 2².3 + ... + 2⁴⁰.3

= 3.(1 + 2² + ... + 2⁴⁰) ⋮ 3

Vậy A ⋮ 3

c) A = 1 + 2 + 2² + 2³ + ... + 2⁴⁰

= (1 + 2 + 2² + 2³) + (2⁴ + 2⁵ + 2⁶ + 2⁷) + ... + (2³⁸ + 2³⁹ + 2⁴⁰ + 2⁴¹)

= 15 + 2⁴.(1 + 2 + 2² + 2³) + ... + 2³⁸.(1 + 2 + 2² + 2³)

= 15 + 2⁴.15 + ... + 2³⁸.15

= 15.(1 + 2⁴ + ... + 2³⁸)

= 5.3.(1 + 2⁴ + ... + 2³⁸) ⋮ 5

Vậy A chia 5 dư 0

Nguyễn An Ninh
3 tháng 11 2024 lúc 9:06

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^41` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^42`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^42) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^41`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^41 - 2^41) + 2^42`$\\$

`2A - A = - 1 + 2^42`$\\$

hay `A = -1 + 2^42`$\\$

Nguyễn An Ninh
3 tháng 11 2024 lúc 9:08

`A = 1 + 2 + 2^2 + 2^3 + ... + 2^{41}` $\\$

`2A = 2 + 2^2 + 2^3 + ... + 2^{42}`$\\$

`2A - A = (2 + 2^2 + 2^3 + ... + 2^{42}) - (1 + 2 + 2^2 + 2^3 + ... + 2^41)` $\\$

`2A - A = 2 + 2^2 + 2^3 + ... + 2^42 - 1 - 2 - 2^2 - 2^3 - ... - 2^{41}`$\\$

`2A - A = (2 - 1 - 2) + (2^2 - 2^2) + (2^3 - 2^3) + ... (2^{41} - 2^{41}) + 2^{42}`$\\$

`2A - A = - 1 + 2^{42}`$\\$

hay `A = -1 + 2^{42}`$\\$

Yahimato Naruko
Xem chi tiết
Lê Quỳnh Anh
Xem chi tiết
Nguyễn Thị Vân Anh
23 tháng 11 2017 lúc 22:17

1.

Gọi số cần tìm là a

theo bài ra ta có: a-7 chia hết 11

 a-7 chia hết 13

a-7 chia hết 17 và a là số lớn nhất có 4 chữ số

=> (a-7) thuộc BC (11,13,17) và a lớn nhất có 4 chữ số

BCNN (11,13,17)=2431

(a-7) thuộc BC (11,13,17)= B(2431)= (0; 2431;4862; 7298; 9724; 12155;....)

=>a thuộc (7; 2438; 4869; 7305; 9731; 12163;...)

mà a là số lớn nhất có 4 chữ số

nên a=9731

Vậy số cần tìm là 9731

Karoy56 Sv1 Tv
Xem chi tiết
☘️✰NaNa✰☘️
2 tháng 1 2019 lúc 20:12

mk chỉ làm đc câu a) bài 1 thôi nha !

Bài 1 .

Ta có :

 a) A = (2+22)+(23+24)+...+299+2100

=> A = (1+2).21+(1+2).23+...+(1+2).299

=> A = 3.(21+23+...+299\(⋮\)3

=> A \(⋮\)3

Hoàng Phương Ly
Xem chi tiết
HT.Phong (9A5)
29 tháng 10 2023 lúc 9:00

a) \(A=1+2+2^2+...+2^{41}\)

\(2A=2+2^2+...+2^{42}\)

\(2A-A=2+2^2+...+2^{42}-1-2-2^2-...-2^{41}\)

\(A=2^{42}-1\)

b) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2\right)+\left(2^2+2^3\right)+...+\left(2^{40}+2^{41}\right)\)

\(A=3+2^2\cdot3+...+2^{40}\cdot3\)

\(A=3\cdot\left(1+2^2+...+2^{40}\right)\)

Vậy A ⋮ 3

__________

\(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2+2^2\right)+...+\left(2^{39}+2^{40}+2^{41}\right)\)

\(A=7+...+2^{39}\cdot7\)

\(A=7\cdot\left(1+..+2^{39}\right)\)

Vậy: A ⋮ 7

c) \(A=1+2+2^2+...+2^{41}\)

\(A=\left(1+2^2\right)+\left(2+2^3\right)+...+\left(2^{38}+2^{40}\right)+\left(2^{39}+2^{41}\right)\)

\(A=5+2\cdot5+...+2^{38}\cdot5+2^{39}\cdot5\)

\(A=5\cdot\left(1+2+...+2^{39}\right)\)

A ⋮ 5 nên số dư của A chia cho 5 là 0 

         A = 1 + 2 + 22 + 23 + ... + 241

       2A =  2 + 22 + 23 + 24 +...+ 242

a, 2A - A = 2 + 22 + 23 + 24+...+ 242 - (1 + 2 + 22 + 23 + ... + 241)

      A   = 2 + 22 + 23 + 24 +...+242 - 1 - 2 - 22 - 23 -...- 241

     A  =   242 - 1

b, A = 1 + 2 + 22 + 23 + ... + 241

    A = 20 + 21 + 22 + 23 + ... + 241

Xét dãy số: 0; 1; 2;...; 41 dãy số này có: (41- 0):1 + 1 = 42 (số hạng)

Vậy A có 42 hạng tử. Nhóm hai số hạng liên tiếp của A với nhau thành một nhóm, vì 42: 2 = 21 nên

A = (20 + 21) + (22 + 23) +...+ (240 + 241)

A = 3 + 22.(1 + 2) +...+ 240.(1 + 2)

A = 3 + 22. 3 +...+ 240. 3

A = 3.(1 + 22 + ... + 240)

Vì 3 ⋮ 3 nên A = 3.(1 + 22 + ... + 240) ⋮ 3 (1)

Vì A có 42 hạng tử mà 42 : 3 = 14 vậy nhóm ba hạng tử liên tiếp của A thành 1 nhóm ta được: 

A = (1 + 2 + 22) + (23 + 24 + 25) +...+ (239 + 240 + 241)

A = 7 + 23.(1 + 2 + 22) +...+ 239.(1 + 2 + 22)

A = 7 + 23.7 +...+ 239.7

A = 7.(1 + 23 +...+ 239)

Vì 7 ⋮ 7 nên A = 7.(1 + 23+...+ 239)⋮ 7 (2)

Kết hợp (1) và (2) ta có: A ⋮ 3; 7(đpcm)

c, A = 242 - 1

    A = (24)10.22 - 1

   A = \(\overline{...6}\)10.4 - 1

  A = \(\overline{..4}\) - 1

  A = \(\overline{...3}\) 

 Vậy  A : 5 dư 3 

             

 

    

nguyen ha
Xem chi tiết