Cho 1/h=1/2 (1/a+1/b)
Chứng minh: a-h/h-b=a/b
1) Cho \(\frac{1}{h}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)
Chứng minh: \(\frac{a-h}{h-b}=\frac{a}{b}\)
Cho nửa đường tròn tâm $O$, đường kính $B C=6$cm. Trên nửa đường tròn lấy điểm $A$ (điểm $A$ khác điểm $B$, điểm $A$ khác điểm $C$). Vẽ đường cao $A H$ của tam giác $A B C$ ( $H \in B C$), trên $B C$ lấy điểm $D$ sao cho $B D=B A$. Kẻ đường thẳng $A D$, gọi điểm $E$ là hình chiếu của điểm $C$ trên đường thẳng $A D$.
1) Chứng minh tứ giác $A H E C$ là tứ giác nội tiếp.
2) Chứng minh: $D A$. $H E=D H . A C$ và tam giác $E H C$ cân.
3) Gọi $R_{1}, R_{2}, R_{3}$ lần lượt là bán kính đường tròn nội tiếp $\Delta A B H, \Delta A C H, \Delta A B C$. Tìm vị trí của điểm $A$ trên nửa đường tròn để $R_{1}+R_{2}+R_{3}$ đạt giá trị lớn nhất.
a) Tự làm nhá
b) +) CM \(\Delta ADC~\Delta HDE\left(g-g\right)\)
=> DA.HE=DH.AC
+) \(\Delta BAD\)cân\(=>\widehat{BAD}=90^0-\frac{1}{2}\widehat{B}=\widehat{CAD}\)
mà \(\widehat{CAD}=\widehat{B}\)
=> AD là tia phân giác góc HAC => Góc HAE = góc CAE => cung HE= cung CE => cạnh HE = cạnh CE => tam giác cân (dpcm)
3) Xét \(\Delta MNP\)zuông tại M ngoại tiếp đươg tròn tâm I , bán kính r , tiếp xúc các cạnhMN , MP,NP thứ tự tại D, E ,F
ta có \(\widehat{IEM}=\widehat{IDM}=\widehat{DME}=90\);ID =IE=r
=> tứ giác IEMD là hình zuông
=> MD=ME=r
Có ND=NF,PE =PF( các tia tiếp tuyến cắt nhau)
=> MN+MP-NP=MD+ND+ME+PE-NF-PF=MD+ME=2r
tam giác ABH zuông tại H có \(\hept{\begin{cases}R_1=\frac{AH+BH-AB}{2}\\\end{cases}}\)
Tam giác ACH zuông tại H có \(R_2=\frac{AH+CH-AC}{2}\)
tam giác ABC zuông tại A có \(R_3=\frac{AB+AC-BC}{2}\)
\(=>R_1+R_2+R_3=AH\)
ta có \(AH\le AO=\frac{6}{2}=3cm\)
dấu = xảy ra khi H trung O
=> A là điểm chính giữa cung BC
Nguồn : https://qanda.ai/vi/solutions/npWTTopujG-Cho-n%E1%BB%ADa-%C4%91%C6%B0ong-tr%C3%B2n-t%C3%A2m-O-d%C6%B0%E1%BB%9Dng-k%C3%ADnh-BC6cm-Tr%C3%AAn-n%E1%BB%ADa-%C4%91%C6%B0%E1%BB%9Dng-tr%C3%B2n
Cho ba điểm A(3;5),B(-1;-7),C(2;-1). Chứng minh ba điểm A,B,C thẳng hàng
\(\overrightarrow{AB}=\left(-4;-12\right)\)
\(\overrightarrow{AC}=\left(-1;-6\right)\)
Vì -4/-1<>-12/-6
nên A,B,C ko thẳng hàng
Cho SABC = 1. Cạnh a, b, c đường cao tương ứng ha, hb, hc. Chứng minh \(\left(a^2+b^2+c^2\right)\left(h_a^2+h^2_b+h^2_c\right)\ge36\)
Ta có :\(S_{ABC}=\dfrac{1}{2}.a.h_a=\dfrac{1}{2}.b.h_b=\dfrac{1}{2}.c.h_c\)
\(\Rightarrow a.h_a=b.h_b=c.h_c=2S_{ABC}=2\)
Áp dụng bất đẳng thức bunhiacopski ta có :
\(\left(a^2+b^2+c^2\right)\left(h_a^2+h_b^2+h_c^2\right)\ge\left(a.h_a+b.h_b+c.h_c\right)^2=36\)
Dấu "=" xảy ra khi tam giác ABC đều
cho tam giác ABC có BC=a, AC=b, AB=c, đường cao AH=h. chứng minh h<=1/2√((a+b+c)(-a+b+c))
A) cho m thuộc n hãy chứng minh 3m +4<3n+4
B) cho a+b≥1/2 chứng minh a²+b²≥1/2
Giúp mình với ạ
Chứng minh rằng:
1/ha + 1/hb + 1/hc = 1/r = 1/ra + 1/rb + 1/rc
bài1: Cho hàm số y=(-2).x
a, vẽ đồ thị hàm số
b, chứng minh A(-1;2);B(2;-4);C(3;-6)thẳng hàng
bài2: cho hàm số y=fx=-4x^2-1
a, tính f(0);f(1);s(-1/2)
b, tìm x để f(x)=0; f(x)=7
Bài 2:
a: f(0)=-1
f(1)=-4-1=-5
f(-1/2)=-1-1=0
b: f(x)=0
=>-4x2=1(vô lý)
f(x)=7
=>-4x2=8(vô lý)
\(\frac{a-h}{h-b}=\frac{a}{b}\). Chứng minh :\(\frac{1}{h}=\frac{1}{2}\left(\frac{1}{a}+\frac{1}{b}\right)\)và ngược lại