ho xy=5,x^2+y^2=18. Tính x^4+y^4.
Cho x,y và xy=15; x2 + y2 =18
Không được tính x và y, hãy tính x4 + y4
ta có:
\(\left(x^2+y^2\right)^2=x^4+2\left(xy\right)^2+y^2\)
\(\Leftrightarrow18^2=x^4+y^4+2.15^2\)
\(\Leftrightarrow324=x^4+y^4+450\)
\(\Leftrightarrow x^4+y^4=324-450\)
\(\Leftrightarrow x^4+y^4=-126\)
mình nghĩ phải là x2-y2=18 thì đề bài mới đúng
\(x^4+y^4\)
\(=x^4+y^4+2\left(xy\right)^2-2\left(xy\right)^2\)
\(=\left(x^2+y^2\right)^2-2\left(xy\right)^2\)
Thay xy = 15 ; x2 + y2 = 18 , ta có :
\(18^2-2.15^2=324-450=-126\)
Vậy ..............
ɱ√ρ︵ƤUɮĞツ『ღƤℓαէїŋʉɱ ₣їɾεツ』⁀ᶜᵘᵗᵉ Làm hơi ngược nên hay bị khó hiểu !
Tinhs x^4+y^4 bieets
X^2+y^2-18 và xy =5
thieu de hay sao vay, bay gio, ghi lai de, gui lai cho trang to, to lam cho
Cho xy= 5 và x2 +y2=18
Tính giá trị M= x4+y4
giúp mk nha mấy bạn đang gấp
\(\left(x^2+y^2\right)=18\Leftrightarrow\left(x^2+y^2\right)^2=324\Leftrightarrow x^4+2x^2y^2+y^4=324\)
\(\Leftrightarrow x^4+y^4+50=324\Leftrightarrow x^4+y^4=274\)
Cho x+y=-2 và xy=-35 tính x^4+y^4 và x^5 +y^5
a/
\(\left(x+y\right)^2=x^2+y^2+2xy=\left(-2\right)^2\)
\(\Leftrightarrow x^2+y^2-2.35=4\Leftrightarrow x^2+y^2=74\)
\(\Rightarrow\left(x^2+y^2\right)^2=x^4+y^4+2x^2y^2=74^2\)
\(\Rightarrow x^4+y^4=74^2-2.\left(-35\right)^2\)
b/
\(\left(x^4+y^4\right)\left(x+y\right)=x^5+x^4y+xy^4+y^5\)
\(\Leftrightarrow x^5+y^5=\left(x^4+y^4\right)\left(x+y\right)-xy\left(x^3+y^3\right)\)(1)
Ta có
\(x^3+y^3=\left(x+y\right)\left(x^2-xy+y^2\right)\)
Thay các giá trị đã tính được vào (1) Bạn tự tính nốt nhé
Bạn thấy số giúp mình đc ko tại mình hơi yếu phần này
1 .Cho x+y=a và xy=b , tính giá trị của biểu thức :
a. x^2+y^2
b. x^3+y^3
c. x^4+y^4
d. x^5+y^5
2 . a.Cho x+y=1 tính GTBT x^3+y^3+xy
b. cho x-y=1 tính GTBT x^3-y^3-xy
c. cho x+y=a , x^2+y^2=b tính x^3+y^3
(x+y)^2 =a^2
x^2 +2xy +y^2 =a^2
x^2+y^2 =a^2-2xy =a^2 -2b
x^3 +y^3 = (x+y)(x^2 -xy +y^2)
=a(a^2-2b-b)
=a(a^2-3b)
=a^3- 3ab
(x^2 +y^2)^2=(a^2-2b)^2 ( cái này tính cho x^4 + y^4)
tương tự như câu đầu tiên
x^5+ y^5 (cái đó mình không biết)
\(1.\)
\(a)\)
\(x^2+y^2\)
\(=\left(x+y\right)^2-2xy\)
\(=a^2-2b\)
\(b)\)
\(x^3+y^3\)
\(=\left(x+y\right)\left(x^2-xy+y^2\right)\)
\(=a[\left(x+y\right)^2-3xy]\)
\(=a\left(a^2-3b\right)\)
\(=a^3-3ab\)
\(c)\)
\(x^4+y^4\)
\(=\left(x^2+y^2\right)^2-2x^2y^2\)
\(=\left(a^2-2b\right)^2-2b^2\)
\(=a^4-4a^2b+2b^2\)
\(d)\)
\(x^5+y^5\)
\(=\left(x^2+y^2\right)\left(x^3+y^3\right)-x^2y^2\left(x+y\right)\)
\(=[\left(x+y\right)^2-2xy][\left(x+y\right)^3-3xy\left(x+y]\right)-ab^2\)
\(=\left(a^2-2b\right)\left(a^3-3ab\right)-ab^2\)
\(=a^5-3a^3b-2a^3b+6ab^2-ab^2\)
\(=a^5-5a^3b+5ab^2\)
chứng minh các đẳng thức sau:
a)(x+y)(x^3-x^2y+xy^2+y^3)=x^4+y^4
b)(x-y)(x^3+x^2y+xy^2+y^3)=x^4-y^4
c)(x+y)(x^4-x^3y+x^2y^2-xy^3+y^4)=x^5+y^5
d)(x-y)(x^4+x^3y+x^2y^2+xy^3+y^4)=x^5-y^5
đối với các câu này bạn hãy khai triển phần nào dài bằng hàng dẳng thức rồi thu gọn lại nếu đúng thì vế trái bằng vế phải
BT10: Thực hiện phép tính
\(a,\dfrac{4}{5}y^2x^5-x^3.x^2y^2\)
\(b,-xy^3-\dfrac{2}{7}y^2.xy\)
\(c,\dfrac{5}{6}xy^2z-\dfrac{1}{4}xyz.y\)
\(d,15x^4+7x^4-20x^2.x^2\)
\(e,\dfrac{1}{2}x^5y-\dfrac{3}{4}x^5y+xy.x^4\)
\(f,13x^2y^5-2x^2y^5+x^6\)
a: =-1/5x^5y^2
b: =-9/7xy^3
c: =7/12xy^2z
d: =2x^4
e: =3/4x^5y
f: =11x^2y^5+x^6
cho x^2+xy+y^2=5
tính giá trị của biểu thứcA=x^4+y^4+(x+y)^4
\(A=x^4+y^4+\left(x+y\right)^4\)
\(=x^4+y^4+x^4+4x^3y+6x^2y^2+4xy^3+y^4\)
\(=2y^4+4y^2\left(x^2+xy\right)+2\left(x^4+2x^3y+x^2y^2\right)\)
\(=2y^4+4y^2\left(x^2+xy\right)+2\left(x^2+xy\right)^2\)
\(=2\left(y^2+xy+x^2\right)^2=2.5^2=50\)