TÍNH NHANH
A =1/1.2.3 + 1/2.3.4 +1/3.4.5 +....+ 1/1999.2000.20001
Giúp mình với!!!
Tính nhanh tổng sau: 1/1.2.3+1/2.3.4+1/3.4.5+...+1/10.11.12
Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng:
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+...+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\\ =\dfrac{1}{2}-\dfrac{1}{11\cdot12}=\dfrac{1}{2}-\dfrac{1}{132}=\dfrac{65}{132}\)
Ta có \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{n+2-n}{n\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Áp dụng
\(\dfrac{1}{1\cdot2\cdot3}+\dfrac{1}{2\cdot3\cdot4}+...+\dfrac{1}{10\cdot11\cdot12}\\ =\dfrac{1}{2}\left(\dfrac{2}{1\cdot2\cdot3}+\dfrac{2}{2\cdot3\cdot4}+...+\dfrac{2}{10\cdot11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{1\cdot2}-\dfrac{1}{2\cdot3}+\dfrac{1}{2\cdot3}-\dfrac{1}{3\cdot4}+..+\dfrac{1}{10\cdot11}-\dfrac{1}{11\cdot12}\right)\\ =\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{11\cdot12}\right)=\dfrac{1}{2}\left(\dfrac{1}{2}-\dfrac{1}{132}\right)=\dfrac{1}{2}\cdot\dfrac{65}{132}=\dfrac{65}{264}\)
Ta có: \(\dfrac{1}{n\left(n+1\right)}-\dfrac{1}{\left(n+1\right)\left(n+2\right)}=\dfrac{2}{n\left(n+1\right)\left(n+2\right)}\)
Đặt \(A=\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(\Leftrightarrow2A=\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\)
\(=\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\)
\(=\dfrac{1}{2}-\dfrac{1}{11.12}=\dfrac{65}{132}\)
\(\Rightarrow A=\dfrac{65}{132}:2=\dfrac{65}{264}\)
Tính nhanh :
1/1.2.3 +1/2.3.4 +1/3.4.5 +...... + 1/20.21.22
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+\frac{1}{3.4.5}+...+\frac{1}{20.21.22}=\frac{1}{2}\left(\frac{2}{1.2.3}+\frac{2}{2.3.4}+\frac{2}{3.4.5}+...+\frac{2}{20.21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+\frac{1}{3.4}-\frac{1}{4.5}+....+\frac{1}{20.21}-\frac{1}{21.22}\right)\)
\(=\frac{1}{2}\left(\frac{1}{2}-\frac{1}{462}\right)=\frac{1}{2}.\frac{115}{231}=\frac{115}{462}\)
tính nhanh:
Q=1/1.2.3+1/2.3.4+1/3.4.5+...+1/9.10.11
ai làm nhanh mình tick cho
2Q=\(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.........+\frac{1}{9.10}-\frac{1}{10.11}\)
2Q=\(\frac{1}{1.2}-\frac{1}{10.11}\)
2Q=\(\frac{1}{2}-\frac{1}{110}\)
2Q=\(\frac{55}{110}-\frac{1}{110}\)
2Q=\(\frac{54}{110}\)
Q=\(\frac{54}{110}:2\)
Q=\(\frac{27}{110}\)
Tính nhanh tổng sau: \(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+\dfrac{1}{3.4.5}+...+\dfrac{1}{10.11.12}\)
\(\dfrac{1}{1.2.3}+\dfrac{1}{2.3.4}+...+\dfrac{1}{10.11.12}\)
\(=\dfrac{1}{2}.\left(\dfrac{2}{1.2.3}+\dfrac{2}{2.3.4}+...+\dfrac{2}{10.11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{2.3}+\dfrac{1}{2.3}-\dfrac{1}{3.4}+...+\dfrac{1}{10.11}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{1.2}-\dfrac{1}{11.12}\right)\)
\(=\dfrac{1}{2}.\left(\dfrac{1}{2}-\dfrac{1}{132}\right)\)
\(=\dfrac{1}{2}.\dfrac{65}{132}=\dfrac{65}{264}\)
Tính nhanh: D= 1/1.2.3+1/2.3.4 +1/3.4.5+ ..... + 1/98.99.100
1,Tính nhanh
A=1/3+1/3^2+1/3^3+...+1/3^2007+1/3^2008
B=1/3+1/3^2+1/3^3+...+1/3^n-1+1/3^n ; n∈N*
2,Tính tổng
a,S=1/1.2.3+1/2.3.4+1/3.4.5+..+1/2006.2007.2008
b,S=1/1.2.3+1/2.3.4+1/3.4.5+..+1/n.(n+1).(n+2); n∈N*
A = \(\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
3A= \(1+\frac{1}{3}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
3A-A= \(1-\frac{1}{3^{2008}}\)
B = \(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{n-1}}+\frac{1}{3^n}\)
3B = \(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{n-2}}+\frac{1}{3^{n-1}}\)
3B - B = \(1-\frac{1}{3^n}\)
Ta có :
\(A=\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\)
\(\Leftrightarrow\)\(3A=1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\)
\(\Leftrightarrow\)\(3A-A=\left(1+\frac{1}{3}+\frac{1}{3^2}+...+\frac{1}{3^{2006}}+\frac{1}{3^{2007}}\right)-\left(\frac{1}{3}+\frac{1}{3^2}+\frac{1}{3^3}+...+\frac{1}{3^{2007}}+\frac{1}{3^{2008}}\right)\)
\(\Leftrightarrow\)\(2A=1-\frac{1}{3^{2008}}\)
\(\Leftrightarrow\)\(2A=\frac{3^{2008}-1}{3^{2008}}\)
\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{3^{2008}}:2\)
\(\Leftrightarrow\)\(A=\frac{3^{2008}-1}{2.3^{2008}}\)
Vậy \(A=\frac{3^{2008}-1}{2.3^{2008}}\)
1/1.2.3+1/2.3.4+1/3.4.5+....+1/49.50.51
Giải nhanh giúp mình với , cái dấu / là vạch giữa tử và mẫu
\(\frac{1}{1.2.3}+\frac{1}{2.3.4}+....+\frac{1}{49.50.51}\)
\(=\frac{1}{2}.\left(\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-....-\frac{1}{50.51}\right)\)
\(=\frac{1}{2}.\left(\frac{1}{2}-\frac{1}{2550}\right)=\frac{637}{2550}\)
\(A=\frac{1}{1.2.3}+\frac{1}{2.3.4}+...+\frac{1}{49.50.51}\)
\(2A=\frac{2}{1.2.3}+\frac{2}{2.3.4}+...+\frac{2}{49.50.51}\)
ta có dạng tổng quát
\(\frac{1}{n\left(n+1\right)}-\frac{1}{\left(n+1\right)-\left(n+2\right)}=\frac{2}{n\left(n+1\right)\left(n+2\right)}\) bạn quy đồng ra rồi tính nha
\(2A=\frac{1}{1.2}-\frac{1}{2.3}+\frac{1}{2.3}-\frac{1}{3.4}+.....+\frac{1}{49.50}-\frac{1}{50.51}\)
\(2A=\frac{1}{1.2}-\frac{1}{50.51}\)
\(2A=\frac{637}{1275}\)
\(A=\frac{637}{2550}\)
Tính nhanh:
\(A=\frac{1}{1.2.3}-\frac{1}{2.3.4}-\frac{1}{3.4.5}-...-\frac{1}{97.98.99}\)
Câu5: Tính : 1.2.3+2.3.4+3.4.5+...................+28.29.30.Từ đó cho biết kết quả của tổng : 1.2.3+2.3.4+3.4.5+............................+(n-1).n.(n+1) theo n
(với n là số tự nhiên khác 0 )
Đặt A = 1.2.3 + 2.3.4 + 3.4.5 + ... + 28.29.30
4A = 1.2.3.(4-0) + 2.3.4.(5-1) + 3.4.5.(6-2) + ... + 28.29.30.(31-27)
4A = 1.2.3.4 - 0.1.2.3. + 2.3.4.5 - 1.2.3.4 + 3.4.5.6 - 2.3.4.5 + ... + 28.29.30.31 - 27.28.29.30
4A = 28.29.30.31 - 0.1.2.3
4A = 28.29.30.31
\(A=\frac{28.29.30.31}{4}=7.29.30.31=188790\)
Theo cách tính trên ta dễ dàng tính được:
1.2.3 + 2.3.4 + 3.4.5 + ... + (n - 1).n.(n + 1) = \(\frac{\left(n-1\right).n.\left(n+1\right).\left(n+2\right)}{4}\)